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ABSTRACT

Both the standard estimate [1] of the second-order cyclic fre-
quency of a digital communication signal and its improved
versions (based on a weighted criterion [2] [3][4] or a denois-
ing of the cyclic periodogram [5]) do not take into account a
key property of the signal. Indeed, the support of the cyclo-
spectrum at the true cyclic frequency is a narrow interval cen-
tered around half this cyclic frequency. This fact is taken into
account in this contribution. A theoretical fact explains the
improvement over the standard method. Simulations confirm
the expectation.

1. INTRODUCTION

The estimation of the second-order cyclic frequencies of a
signal is an old signal processing problem involved in var-
ious applications. In particular, in a digital communication
context, the knowledge of the cyclic frequencies is essential
prior to synchronization, equalization [6], blind source sepa-
ration [7, 8]. Both military (passive listening with automatic
classification of modulations) and cooperative (blind synchro-
nization of high-speed distributed networks) applications are
concerned.

In the context of linear modulations, the complex enve-
lope of the signal received may be written as

xa(t) =
∑
n∈Z

snca(t − nTs) + ba(t) (1)

where Ts is the symbol period, (sn)n∈Z a zero-mean, white
i.i.d. sequence of symbols to be transmitted, ca the unknown
impulse response of the composite filter resulting from the
shaping and the effect of a linear time-invariant channel; the
transmit filter concentrate the energy of the signal in a band of
frequencies. Specifically, the Fourier transform ĉa of ca has a

support included in
[
− 1+γ

2Ts

, 1+γ
2Ts

]
, where γ is the bandwith

excess and is assumed to be lower than 1. Lastly, in (1), ba(t)
is an additive stationary noise. In the literature, almost every

demodulation scheme (blind or not) implicitly assume known
(or at least correctly estimated) the symbol period Ts in order
to sample xa at the rate 1/Ts (or a multiple). In order to
achieve the estimation of Ts, it has been noticed by Gardner
[9] that xa is cyclostationary. Focussing in particular on the

auto-correlation function Rxa
(t, τ)

�
=Exa(t + τ)xa(t)∗, for

t, τ ∈ R, it can be shown that

Rxa
(t, τ) =

∑
k=−1,0,1

R(k/Ts)
xa

(τ)ei2πkt/Ts . (2)

The fact that the expansion (2) shows only 3 terms is due to
the bandwidth limitation of signal xa. As a consequence,
the estimation of Ts reduces, for the second-order point of
view, to the estimation of the periodicity of the functions t �→
Rxa

(t, τ). This problematic can easily be shifted to a discrete-
time context. Indeed, let us choose Te any sampling period,

and set x(n)
�
=xa(nTe). Hence Rx(n, δ)

�
=Ex(n + δ)x(n)∗ is

an almost periodic function, since Rx(n, δ) = Rxa
(nTe, δTe).

Its cyclic frequencies are 0,±α0 with α0
�
=Te/Ts. In the se-

quel, we assume that Te is neither equal to Ts nor to a multiple
of Ts, so that n �→ Rx(n, δ) is effectively almost periodic (not
constant) and can be written

Rx(n, δ) =
∑

k=−1,0,1

R(kα0)
x (δ)ei2πnkα0

with R
(kα0)
x (δ) = R

(k/Ts)
xa

(δTe). We may introduce the func-
tion

R(α)
x (δ) = lim

N→∞

1

N

N−1∑
n=0

Ex(n + δ)x(n)∗e−2iπnα, (3)

which has the property that for any δ, R
(α)
x (δ) vanishes if

α /∈ {0,±α0}; conversely, if α = ±α0, there are indices δ

such that R
(α)
x (δ) �= 0. This remark justifies the definition of

the function

J(α)
�
=

M∑
τ=−M

∣∣∣R(α)
x (τ)

∣∣∣2 (4)
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which is a strictly positive function that vanishes if α �= 0 and
α �= ±α0 and hence allows one to know α0, hence Ts. In
practice, J(α) is estimated as

Ĵ(α) =

M∑
δ=−M

∣∣∣R̂(α)
x (δ)

∣∣∣2 (5)

where R̂
(α)
x (δ) is the unbiased empirical estimate of R

(α)
x (δ)

defined as

R̂(α)
x (δ) =

1

N

N−1∑
n=0

x(n + δ)x(n)∗e−2iπnα

with N the number of available data. It is a well-known fact
(see [10][3]) that R̂

(α)
x (δ) is a consistent estimate of R

(α)
x (δ).

As a consequence, if1 the condition Te < Ts/2 holds, the
standard estimate of α0 is defined as α̂0 = Argmaxα∈(0, 1

2
)Ĵ(α).

Such a definition allows one to see the estimation of α0

as the estimation of the frequency of a sinusoide in a cyclo-
stationary noise [11]; in this latter reference, it is proven that
α̂0 is a consistent estimate of α0, hence N3/2(α̂0 − α0) con-
verges to a zero-mean Gaussian random variable. The rate of
convergence (N3/2) makes the algorithm efficient in a local
domain around the true parameter α0. However, it has long
been noticed that, for short data, the function Ĵ(α) is likely to
be above Ĵ(α0), hence making erroneous the estimate α̂0. In
short, this is due to the fact J(α0) tends to 0 if γ → 0. Hence
for small excess bandwidth factors γ, the value of J(α0) is
small.

This was first reported by Gini et al. [2]. The authors rem-
edy the problem in considering a weighted version of Ĵ(α);
Mazet et al. [4], in this direction, prove that taking into ac-
count a weighting independent of the (unknown) α0, thus
suboptimal, does not impact the performance. In short, the
weighting makes the (asymptotic) mean of Ĵ(α), α /∈ {0 , ±α0}
be constant, which drastically improves the performance. Though
theoretically appealing, the approach is computationally in-
volved and suffers from serious numerical problems due to
the calculation of the weighting matrix. In an other direction,
Touati et al. [5] adopt another point of view in order to im-
prove the performance of the estimate α̂0. As

R(α)
x (δ) =

∫ 1

0

S(α)
x (ei2πν)ei2πδνdν,

where the cyclo-spectrum S
(α)
x is defined as

S(α)
x (ei2πν)

�
=

∑
δ

R(α)
x (δ)ei2πνδ,

an idea consists in providing an efficient estimate of S
(α)
x for

every α, i.e. to apply denoising techniques of the standard
cyclo-periodogram.

1This is, in practice not restrictive, since a raw spectral analysis of the
received signal may be performed prior to the choice of the sampling period.
This condition holds along the paper

However, in all these approaches, a crucial fact is not
taken into account. Namely, the cyclo-spectrum at the un-
known cyclic frequency α0, can be written, since condition
Te < Ts/2 is assumed to hold: ∀ν ∈ [−1/2 , 1/2),

S(α0)
x (ei2πν) =

1

TsTe
ĉa

(
ν

Te

)
ĉa

(
ν

Te
− 1

Ts

)∗

hence the support of S
(α0)
x is included in Bα0,γ with

Bα0,γ
�
=

[
(1 − γ)

α0

2
, (1 + γ)

α0

2

]

(see [9] for instance). We present a new estimate of α0 relying
on this fact. In this respect, we consider the new statistic

Ĵf (α)
�
=

M∑
δ=−M

∣∣∣R̂(α)
[f(z)]x(n)(δ)

∣∣∣2 (6)

where f(z) is a certain filter depending on the parameter α.
Of course Ĵf (α) is merely the natural (consistent) estimate of

Jf (α)
�
=

∑M
δ=−M

∣∣∣R(α)
[f(z)]x(n)(δ)

∣∣∣2 , which shares with J(α)

the key property that Jf (α) vanishes if α �= 0 or α �= ±α0. A
set of filters f(z) is set forth in Section 2; a theoretical argu-
ment proves that the new estimate based on the maximization
of (6) for this class of filters is expected to be better than α̂0.
Section 3 focuses on numerical aspects; simulations show the
clear improvement brought by the approach. In particular, the
estimate has a high level of confidence in quite difficult con-
texts (short data, small excess bandwidth factor).

2. THEORETICAL APPROACH

We propose to work out the basic properties of the random
variable Ĵf (α) for a certain filter f(z). In this respect, we
may set

y(n)
�
=[f(z)]x(n).

2.1. Analysis for α = α0

The cyclo-spectrum of y(n) is directly expressed as

S(α0)
y (ei2πν) = f(ei2πν)f(ei2π(ν−α0))∗S(α0)

x (ei2πν). (7)

Now the support of S
(α0)
x is Bα0,γ , hence Jf (α0) expresses

as

M∑
δ=−M

∣∣∣∣∣
∫
Bα0,γ

f(ei2πν)f(ei2π(ν−α0))∗S(α0)
x (ei2πν)ei2πδνdν

∣∣∣∣∣
2

.

As a consequence

Jf (α0) = J(α0). (8)

when f(z) is a filter such that f(ei2πν) = 1 for all ν ∈
Bα0,γ

⋃
(B−α0,γ).
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2.2. Analysis for α �= α0

In this case Ĵf (α) tends to zero in probability. More precisely,

we may consider the vector R̂
(α)

y
�
=[R̂

(α)
y (−M), · · · , R̂

(α)
y (M)]T .

Standard statistical tools show that
√

N
(
R̂

(α)

y

)
converges

to a zero-mean Gaussian vector with covariance Γy(α) the
expression of which may be found in [11]. As Ĵf (α) =

R̂
(α)H

y R̂
(α)

y , we can deduce that

φf (α)
�
= lim

N→∞
NEĴf (α) = φ

(1)
f (α) + φ

(2)
f (α) (9)

with

φ
(1)
f (α) = (2M + 1)

∫ 1

0

S(0)
y (e2iπν)S(0)

y (e2iπ(ν−α))dν

φ
(2)
f (α) = 2Reλ

∫ 1

0

S(α0)
y (e2iπν)S(α0)

y (e2iπ(ν−α))dν

with λ
�
=

∑M
k=−M ei2πkα0 . In the latter formula, S(α0)

y is given
by (7) and

S(0)
y (ei2πν) = |f(ei2πν)|2S(0)

x (ei2πν). (10)

We emphasize that the study of the asymptotic mean (9) is
quite meaningful; indeed, if φf (α) is “large”, this means that
Ĵf (α) is likely to be above the value Ĵf (α0): this makes the
algorithm be fooled. Of course, the analysis of the mean of
Ĵf (α) is not sufficient; one should require to study the asymp-
totic variance. The computation of this latter being too de-
manding (it involves the computation of 8th order statistics of
signal y), we restrict our analysis to the asymptotic mean.

As a consequence, one may expect a better performance
of the estimator of α0 for filters f(z) that verify

1. φf (α) is small for every α

2. Eq. (8) holds.

Let us denote by γ̂ a certain parameter in (0, 1). We consider,
for every α a filter f(z), denoted by fα,γ̂(z) defined by

fα,γ̂(e2iπν) =

{
1 if ν ∈ Bα,γ̂

⋃
(B−α,γ̂)

0 if not
(11)

Clearly, (8) with f = fα0,γ̂ holds when

γ̂ ≥ γ. (12)

It remains to show that such filters fα,γ̂(z) have the effect of
decreasing the asymptotic mean φfα,γ̂

(α) for every α. It was

first noticed by Mazet that for α > α0γ, φ
(2)
f (α) = 0 with

f(z) = 1. Thanks to the definition of fα,γ̂(z), we have a
stronger result:

φ
(2)
fα,γ̂

(α) = 0

when γ̂ < 1
γ This is proved by elementary algebra. Notice

this latter condition is not restrictive at all: since γ < 1, it
suffices to take any γ̂ < 1.

As far as φ
(1)
fα,γ̂

(α) is concerned, we obviously have for
every α �= α0:

φ
(1)
fα,γ̂

(α) < φ
(1)
f(z)=1(α)

This is due to the fact that the effect of fα,γ̂(z) in the expres-

sion of φ
(1)
fα,γ̂

(α) is simply to restrict the integral of a positive
function to a smaller interval. This means that whatever γ̂
may be, the asymptotic mean of our criterion is below this of
the standard criterion. More precisely, we may state that if
γ1 < γ2, then for every α �= α0, we have

φ
(1)
fα,γ1

(α) < φ
(1)
fα,γ2

(α).

This says that the asymptotic mean is all the smaller as the
parameter γ̂ of the filter fα,γ̂ is small. On the other hand,
(12) should be satisfied in order to keep (8) true for f(z) =
fα0,γ̂(z), indicating a tradeoff. In practice, the choice of the
parameter has been noticed not to be difficult (see next sec-
tion).

3. SIMULATIONS

3.1. Illustrations and results

We have considered QPSK modulated signals. The sampling
period is fixed to Te = 1. We generate independent data sets
according to the following principles: Ts = 4 making the
positive cyclic frequency to be estimated α0 = 1/4; the noise
is white and Gaussian; the channel stems from 1) a raised-
cosine shaping filter with an excess bandwidth factor γ = 0.1
and 2) multi-path effects (3 random paths with random delays
in (0 , 2Ts) and random attenuations).

We fixed M = 10, relying on the fact that, for the chan-
nels considered, R

(α0)
y (δ) is numerically weak if |δ| > 10.

As far as the choice of parameter γ̂ is concerned, we notice
that a good choice should be γ̂ = γ; as γ is not available, a
compromise has to be made. We have simply chosen, in all
the simulations γ̂ = 0.2.

The results presented below show that even in the present
context (with γ = 0.1), this choice for γ̂, though not opti-
mal, allows our algorithm to overpass the performance of the
standard algorithm.

The maximization of function α �→ Ĵf (α) cannot be achieved
thanks to a standard steepest descent algorithm. This is due to
the fact that the function in question cannot be expressed sim-
ply as a function of the variable α. The parameter that max-
imizes the function is found after an exhaustive search. The
set the search is perform on is a uniform grid of the (wide)
interval (0.05 , 0.45) with a step of 2−10. The true parameter
lies in the grid. Lastly, the duration of observation is 1000Ts.
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In Figure 1, we have plotted for a given trial the shapes
of α �→ Ĵ(α) and α �→ Ĵf (α) for a SNR of 15dB. The
plain lines represent the asymptotic mean. As was expected
in section 2, the level of the estimation noise for α �= α0 is
much more favorable in our approach.

3.2. Improvement

It is perfectly explained in [2][4] why a whitening of the statis-
tic α �→ Ĵ(α) may improve the estimation of α0. In these
contributions, the asymptotic whitening at all orders is achieved

after transforming the vector R̂
(α)

x into Γ
−1/2
x (α)R̂

(α)

x . The
matrix Γ(α) is ill-conditionned, hence a tricky procedure of
selection of subspace has to be considered. The performance
of the estimate of α0 has been reported to be very sensitive to
this procedure. In order to overcome these difficulties, an idea
consists in considering the whitening only at the first-order,
i.e. consider the criterion Ĵ(α) normalized by the asymptotic
mean limN→∞ NEĴ(α).

Fig. 1. Ĵ(α) and Ĵf

Of course, the
same procedure
may apply to our
estimate. We
theoretically jus-
tify in a forth-
coming paper the
benefit to this
procedure.

In order to
measure the per-
formance of the
different algorithms,
we give in Fig-
ure 2 the his-
tograms of the functions

a1(α) = max
α,α�=α0

Ĵf (α)

Ĵf (α0)
and a2(α) = max

α,α�=α0

Ĵ(α)

Ĵ(α0)

Of course, if, for a realization, a1(α) for instance, is above
1, the associated estimate of α0 is wrong. The SNR is 15dB.
Both the standard and our estimate are improved by the first-
order whitening; however, we reach 100% of correct estima-
tion with the our filter-based method.

4. CONCLUSION

A digital communication signal shows a unique non-null second-
order cyclic frequency; besides, the associated cyclo-spectrum
has the feature that its support is narrow around half the cyclic-
frequency. This is a precious piece of information that allows
us to introduce a novel estimate of this cyclo-frequency. Be-
sides the theoretical justification, the simulations clearly indi-
cate the superiority of this estimate as compared to the stan-
dard estimate even in a difficult scenario.

Fig. 2. Histograms of Ĵ(α), Ĵf , a1(α) and a2(α)
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