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ABSTRACT

The mathematical models of populations of mutually coupled os-
cillators having self-synchronization capabilities are a powerful tool
for designing sensor networks with high energy efficiency, fault tol-
erance and scalability. In this work, we derive the conditions for
the existence the asymptotic stability of the equilibrium of a system
capable to provide maximum likelihood estimates through only lo-
cal coupling and without the need for a fusion center, provided that
the whole network observes the same phenomenon. Interestingly,
we show that the network global consensus capability is strictly re-
lated to the network topology. Finally we test the performance taking
into account propagation delays and possible parameter fluctuations
among the network nodes.

1. INTRODUCTION

One of the main problems in current sensor networks research is how
to convey the necessary amount of data from the network nodes to a
fusion center in the most efficient manner. This entails proper com-
bination of source coding and modulation in order to get the best
trade-off in terms of transmission rate and final decision accuracy.
Not surprisingly, there is a vast literature on this subject (see, e.g.,
[1] and the referenced bibliography). A completely different direc-
tion was taken by Hong and Scaglione [2], who suggested the use
of mutually coupled oscillators as the basic mechanism to reach net-
work consensus without the need for sending the data to a fusion
center. The principle ensuring the self-synchronization capability of
the system proposed in [2], [3] relied on a theorem proved by Mirollo
and Strogatz in [4], where the network was supposed to be fully
connected. This rather restrictive assumption was later removed by
Lucarelli and Wang in [5], who proved that the only really needed
property is global connectivity, that is the property that there is a path
between each pair of nodes. This was a significant step forward, as it
relaxes the need for global coupling, as local coupling is sufficient,
provided that the global connectivity is guaranteed. The oscillator
and coupling model proposed in [2], [3], and [5] associates the local
estimate to the time shift of a pulse oscillator. However, especially
for large scale network, this may create a problem, as the information
bearing time shift may become indistinguishable from the propaga-
tion delay. A more general approach was then proposed in [6] where
it was showed how to reach decentralized maximum likelihood es-
timates through only local coupling, with a scheme which is much
more flexible than the ones suggested in [2] or [5]. The aim of this
work is to derive the conditions under which the system proposed in
[6], [7] is globally asymptotically stable.

This work has been partially funded by ARL, Contract N62558-05-P-
0458, and by the Italian Ministry of Education.

2. SELF-SYNCHRONIZATION OF LOCALLY COUPLED
OSCILLATORS

The proposed sensor network is composed of N nodes and each node
is equipped with four basic components: i) a transducer that senses
the physical parameter of interest (e.g., temperature, concentration
of contaminants, radiation, etc.); ii) a local detector or estimator
that, based on the sensed quantities, takes an initial decision; iii)
a dynamical system (termed oscillator, for simplicity) whose state
evolves in time according to a differential equation which is period-
ically initialized with the local decision and it is coupled with the
states of nearby sensors; iv) a radio interface that transmits the state
of the associated dynamical systems and receives the state of nearby
nodes.

Denoting by ωi the initial local decision (either the result of a
detection or estimation) taken by node i, the dynamical system (os-
cillator) present in node i evolves according to the following equa-
tion

ϑ̇i(t) = ωi +
K

ci

N�

j=1

aij f (ϑj(t) − ϑi(t)) , i = 1, . . . , N, (1)

where ϑi(t) is the state function of the i-th sensor, that is initial-
ized as a random number ϑi(0); f(·) is, typically, a monotonically
increasing nonlinear odd function of its argument that takes into ac-
count the mutual coupling between the sensors. Without loss of gen-
erality, f(x) is normalized so that df(0)/dx = 1. A different value
of df(0)/dx can always be included in K; K is a control loop gain;
ci is a coefficient that quantifies the attitude of the i-th sensor to
adapt its values as a function of the signals received from the other
nodes: The higher is ci, the less is the attitude of the i-th node to
change its original decision ωi. The running decision, or estimate,
of each sensor is encoded in its pulsation ϑ̇i(t). The coefficients aij

take into account the local coupling between oscillators. We assume
that two oscillators are coupled (i.e., aij �= 0), only if their distance
is smaller than the coverage radius of each sensor1.

To make explicit the network connectivity properties, it is better
to rewrite (1) introducing the so called incidence matrix B, defined
as follows. Given an oriented graph G

2 composed by N vertices and
E edges, B is the N × E matrix such that [B]ij = 1 if the edge j
is incoming to vertex i, [B]ij = −1 if the edge j is outcoming from
vertex i, and 0 otherwise. Given the N × 1 vector 1N , composed
of all ones, it is easy to check that the incidence matrix satisfies the
following property:

1
T
B = 0T . (2)

1The coverage radius is assumed to be the same for all sensors, even
though this could be changed to accommodate for different network topo-
logical models, like small worlds or scale-free networks.

2An orientation of a graph G is the assignment of a direction to each edge.
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Given B, the symmetric N×N matrix L defined as L � BBT ,
is called the Laplacian of G , and it is independent of the choice
of the orientation. If we associate a positive number wi to each
edge and we build the diagonal matrix Dw � diag(w), with w �

[w1, · · · , wE ]T , we may introduce the so called weighted Lapla-
cian, which is written as Lw � BDwB

T . The second smallest
eigenvalue λ2(L) (or λ2(Lw)), is referred to as the graph algebraic
connectivity, and it provides a measure of connectivity.

Using the above notation, LA � BDA B
T will denote the

weighted Laplacian associated to the graph describing our network
(1), including the positive coefficients {aij}. Furthermore, dmax �

maxi

�N

j=1 aij will denote the maximum degree of the graph.
Using the incidence matrix B, we can rewrite (1) in compact

form as

ϑ̇(t) = ω − K D
−1
c B DA f

�
B

T
ϑ(t)

�
, (3)

where ϑ(t) � [ϑ1, · · · , ϑN ]T , Dc � diag {c1, . . . , cN}; DA is an
E × E diagonal matrix, whose diagonal entries are all the weights
aij , indexed from 1 to E; the symbol f(x) has to be intended as the
vector whose k-th component is f(xk).

Given (1) (or, equivalently, (3)), we are interested in following
solutions.

Definition 1 The overall population of oscillators (1) is said to syn-
chronize if there exists a vector ϑ�(t), called the synchronized state
of the system, such that

lim
t �→∞

‖ϑ̇i(t) − ϑ̇
�
(t)‖ = 0, ∀i = 1, 2, . . . , N, (4)

where ‖ · ‖ denotes some vector norm. This state is said globally
asymptotically stable if the system synchronizes, for any set of initial
conditions.

From Definition 1, it follows that, if there exists a synchronized
state that is globally asymptotically stable, then it must necessar-
ily be unique. Interestingly, the synchronized state, if it exists, can
be computed in closed form, without solving explicitly the system
of differential equations. In fact, multiplying (3) by the row vector
c

T � 1
T
NDc from the left side, we obtain

c
T

·

ϑ(t) = c
T
ω − K 1

T
NBDAf

�
B

T
ϑ
�

= c
T
ω, (5)

where in the second equality of (5), we have used (2). Hence, if
system (3) synchronizes (according to Definition 1), the common

value of
·

ϑ
∗

(t) must be equal to

·

ϑ
∗

(t) � ω∗ =
c

T ω

1T
Nc

=

�N

i=1
ciωi�N

i=1
ci

. (6)

3. REACHING GLOBAL ML ESTIMATE THROUGH
SELF-SYNCHRONIZATION

The self-synchronization process may form the basic mechanism to
reach a global consensus among the network nodes without a fusion
center. In particular, as shown in [6], self-synchronization may be
made to converge to the global optimal maximum likelihood (ML)
estimate. We now recast the formulation of [6] in order to emphasize
the role of the network incidence matrix. Let us consider the linear
observation model, where the i-th sensor observes a vector

yi = Aix + wi, (7)

where x is the unknown parameter vector, assumed to be the same
for all sensors; Ai is the mixing matrix of sensor i, and wi is the
observation noise vector, modeled as a circularly symmetric com-
plex Gaussian vector with zero mean and covariance matrix C i. We
assume that the noise vectors affecting different sensors are statisti-
cally independent of each other (however, the noise vector present
in each sensor may be colored). Let us denote with L the number of
unknowns, so that x is a column vector of size L. The observation
vector yi has dimension M . We consider the case where the sin-
gle sensor must be able, in principle, to recover the parameter vector
from its own observation. This requires that M ≥ L and that Ai is
full column rank. The ML estimate of each sensor alone is then

x̂
(i)
ML = (AH

i C
−1
i Ai)

−1
A

H
i C

−1
i yi. (8)

An ideal centralized node that gathers all the observation vectors
yi without errors and knows all mixing matrices Ai, would derive
the optimal centralized ML estimate, equal to

x̂ML =

�
n�

i=1

A
H
i C

−1
i Ai

�−1� n�
i=1

A
H
i C

−1
i yi

�
, (9)

where the summation extends over all the nodes that send their infor-
mation to the decision node. Clearly, the estimate (9) is the desired
solution, but it is difficult to obtain because it requires a lot of in-
formation arriving at the decision node, without errors. In fact, the
sensor fusion center would need to know not only all the observa-
tions yi, but also the mixing matrices Ai and the noise covariance
matrices C i of each sensor.

We show now that the optimal ML estimate can be achieved
through the self synchronization process described before, without
the need for collecting all the information in any node. Generaliz-
ing the strategy described in the previous section to the vector case,
we design nodes that evolve according to the following vector state
equation

ϑ̇i(t) = x̂
(i)
ML + K(AH

i C
−1
i Ai)

−1
N�

j=1

aij f (ϑj(t) − ϑi(t)) ,

(10)
with i = 1, . . . , N and x̂

(i)
ML given by (8). Introducing the vectors

ϑ̇(t) � (ϑ̇
T

1 (t), . . . ϑ̇
T

N (t))T and x̂ � (x̂
(1)T

ML , . . . , x̂
(N)T

ML )T , and
the matrices Qi � AH

i C−1
i Ai and DQ � diag(Q1, . . . , QN ), we

can rewrite all equations in (10) in a more compact form as

ϑ̇(t) = x̂ − K D
−1
Q P

T (IL ⊗ BDA) f
�
(IL ⊗ B

T )Pϑ(t)
�
,

(11)
where P is an LN × LN permutation matrix, such that [P]ij = 1

if j = ((i − 1)L + 1) mod N, and [P]ij = 0 otherwise.

Left-multiplying both sides of (11) by
�
1

T
N ⊗ IL

	
DQ, we ob-

tain
N�

i=1

Qi ϑ̇i(t) =
N�

i=1

Qix̂
(i)
ML, (12)

where we used the following chain of equalities (1T
N ⊗IL)PT (IL⊗

BDA) = (IL ⊗ 1
T
N )(IL ⊗ BDA) = IL ⊗ 1

T
NBDA = 0, and

the property (2). Hence, if the system has the capability to reach a
synchronization state, where ϑ̇i(t) = ϑ̇

∗
(t), for all i, that it must

necessarily be

ϑ̇
∗
(t) =

�
n�

i=1

A
H
i C

−1
i Ai

�−1� n�
i=1

A
H
i C

−1
i yi

�
. (13)

This equilibrium coincides with the global optimal ML estimate (9).
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4. GLOBAL ASYMPTOTIC STABILITY OF THE
SYNCHRONIZED STATE

Given the dynamic system (1) or (10), some natural questions arise:
i) Does the synchronized state exist? ii) If it exists, does the system
synchronize, for any set of initial conditions?

In this paper we give an answer to these questions for the system
(1). Similar results are obtained for the more general model (10) in
[8]. Specifically, we have the following.

Theorem 1 Given the system (1), assume that the following condi-
tions are satisfied:

a1 The graph associated to the network is connected;

a2 The nonlinear function f(·) : R �→ R is a continuously differen-
tiable, odd, increasing function in R;3.

a3 The nonzero coefficients aij are positive.

Then, there exist two unique critical values of K, denoted by KL

and KU , with 0 ≤ KL ≤ KU , such that the synchronized state ex-
ists for all K > KU , and it does not for all K < KL. Furthermore,
if it exists, the synchronized state is globally asymptotically stable.
Upper and lower bounds of KL and KU are

KL ≥
‖Dc∆ω‖

∞

fmaxdmax
, and KU ≤

2 ‖Dc∆ω‖2

fmaxλ2(LA)
. (14)

where ∆ω � ω−ω∗
1N, with ω∗ defined in (6); fmax � limx→+∞

f(x); dmax and λ2(LA) are the maximum degree and the algebraic
connectivity of the graph, respectively.

Proof. See Appendix.
Remark 1 Even though conditions in (14) provide only a range for
the values of KL and KU , they state an important property of the
whole system: If we want the network to reach a global consensus
(common estimate), it is sufficient to take K greater than the upper
bound in (14); conversely, if we do not want the network to reach a
global consensus, we need to take K smaller than the lower bound
in (14). This was used, for example, in [7] to get spatial smoothing
of the observed phenomenon. This is indeed a unique possibility
offered by nonlinear systems. Our nonlinear model contains, in fact,
as a particular case, linear dynamic systems, corresponding to the
choice f(x) = x. However, in the case of unbounded coupling
function, as in the linear case, the lower and upper bounds in (14)
coincide, so that there exists a unique critical value of K, given by
KL = KU = 0. Thus, a linear system always converges to the
equilibrium, for any positive values of K. Hence, this is one more
example showing that nonlinear systems offer a variety of behaviors
impossible for linear systems.
Remark 2 From (14), it is evident that the synchronization prop-
erties depend on the graph topology through the second-smallest
eigenvalue of the graph representing the network. This means that,
for a given K, different topologies give rise to different behaviors.
For example, scale-free random graphs exhibit an interesting behav-
ior. In fact, denoting with λ̄2(m0, N) the average value of the sec-
ond smallest eigenvalue of a network composed of N nodes, aver-
aged over the graph realizations, for a given value of m0 that is the
initial number of nodes used to construct the network according to
the iterated procedure of growth and preferential attachment, it was
shown in [9] that the limit of λ̄2(m0, N) for N going to infinity is

3For the lack of space, we consider only asymptotically convex or concave
functions f(·), i.e. functions that can not change their concavity infinitely
often. Observe that this constraint does not represent a strong restriction in
the choice of the function f(·). However, the general case is studied in [8]

constant. This proves the scalability of scale-free networks, that is
the property that, provided that the network size is sufficiently large,
adding new nodes does not change the synchronization capabilities
and then the possibility to achieve global optimal estimates.
Remark 3 In the particular case of c = 1, and under conditions
of Theorem, the dynamical system (3) approaches the synchronized
state with a speed that is locally proportional to Kλ2(L). Once
again, this behavior is directly related to the network topology.

5. RESULTS AND CONCLUSION

The propagation delays clearly have an impact on the system syn-
chronization. Incorporating the delays explicitly in the system gives
rise to the following set of equations

ϑ̇i(t) = ωi +
K

ci

N�

j=1

aij f (ϑj(t − τ ij) − ϑi(t)) , i = 1, . . . , N,

(15)
where τ ij = dij/c is the delay with which the state ϑj(t) of oscilla-
tor j reaches oscillator i, dij is the distance between nodes i and j,
and c is the speed of light. This case is not covered by the theory de-
scribed in this paper. Nevertheless, we have observed by simulation
that even with considerable delays, the network converges. How-
ever, the final value differs from the one predicted in the absence of
delays. The evaluation of this bias is an interesting research topic
that we are currently investigating. As a final performance assess-
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Fig. 1. Estimation variance as a function of the number of sensors.

ment, in Fig. 1, we report the variances obtained in the estimate of a
vector parameter of dimension L = 3, as a function of the number of
sensors N . The observation matrices Ai are 6 × 3 and their entries
are generated as i.i.d. Gaussian random variables, to test the robust-
ness of the proposed approach. The network considered in this case
is a regular network, where all nodes have degree 4, for all values
of N . It is interesting to observe that, even though the coupling is
only local and it does not vary with N , the variance decays as 1/N ,
as the optimal ML estimators thus confirming the scalability of the
proposed approach.

6. APPENDIX

A complete proof of Theorem 1 is given in [8]. Because of the space
limitation, here we provide only the stretch of the proof.

The basic ideas are the following. We introduce, first, a proper
transformation of the original system (3), so that the existence and
the global asymptotic stability (according to Definition 1) of the syn-
chronized state can be recasted in the classical study of existence and
the asymptotic stability of the equilibria of the transformed system
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(see, e.g., [10]). Then, we prove, using standard fixed point argu-
ments, that, under a1-a3, an equilibrium for the transformed system
exists, provided that K > KU , and cannot exist if K < KL. Finally,
we show, introducing a valid Lyapunov function, that, if an equilib-
rium exists, it is also asymptotically stable. We need the following
intermediate results.

Lemma 2 ([8]) Given an oriented weighted graph G with N nodes,
and positive numbers {wi}i associated to the edges, let Lw � BDw

B
T be the (weighted) Laplacian of G , where B is the N × E in-

cidence matrix, Dw � diag (w) is the E × E diagonal matrix
whose diagonal entries are the edge-weights wi. Let L�

w denote the
generalized inverse of Lw [11]. If the graph G is connected, then
L

�
w : R

E
++ �→ R

N is a continuous function in R
E
++.

Lemma 3 ([12, Theorem 4.14]) Let C be a closed, convex subset
of a normed linear space. Then, every compact4, continuous map
F : C �→ C admits at least one fixed point.

Existence. Assume that conditions a1 and a3 are satisfied and con-
sider the following change of variables Ψi(t) = ϑi(t) − ω∗t,
with ω∗ defined in (6). The original system (3) can be equivalently
rewritten as

·

Ψ(t) = ∆ω − K D
−1
c BDAf

�
B

T
Ψ(t)

�

= ∆ω − KD
−1
c BDADΨB

T
Ψ(t)

� ∆ω − KD
−1
c LΨΨ(t) (16)

where Ψ(t) = [Ψ1(t), . . . , ΨN (t)]T , with Ψ(0) = ϑ(0) ∈ [−a, a]N ,

∆ω=ω −ω∗
1, and LΨ � BDADΨB

T is the weighted Laplacian
of the graph, with diagonal weights-matrix DADΨ (that depend on
Ψ(t)), and [DΨ]ii given by

[DΨ]ii =
f
��

B
T
Ψ
�
i

�

[BT Ψ]i
> 0, i = 1, . . . , E, (17)

where the positivity of [DΨ]ii > 0 for all Ψ, comes from a2.
The synchronized state for (3) exists if and only if (16) admits

an equilibrium, or equivalently, the following fixed point equation
admits a solution

LΨΨ =
Dc∆ω

K
. (18)

For bounded functions f(·), i.e. fmax < ∞, the left side of
(18) is bounded. Hence, there exists a sufficiently low K such that
K ‖LΨ Ψ‖

∞
< ‖Dc∆ω‖

∞
, which guarantees the existence of

KL, and the lower bound in (14)5. In the case of unbounded f(·) (as,
e.g., for linear dynamic systems), the lower bound of KL disappears.

We prove the existence of KU , computing directly the upper
bound in (14). To this end, we use Lemma 3, and show that the
equation (18) admits a fixed-point in some compact, convex set of
R

N , chosen, without loss of generality, as Ba �
�
x ∈ R

N : ‖x‖2

≤ a} , where a is any number in R++. Invoking Lemma 2 and
denoting by L

�
Ψ the generalized (Drazin) inverse of the weighted

Laplacian LΨ [11], we have that the mapping L
�
A,ΨD

c
∆ω/K in

(18) is continuous on R
N (because of the positivity of [DΨ]ii > 0,

∀Ψ ∈ R
N ). Hence, according to Lemma 3, a fixed-point for (18)

exists, if L
�
A,ΨD

c
∆ω/K is a compact map on Ba, for some a ∈

4The map f : C �→ C is called compact if f(C) is contained in a compact
subset of C.

5Observe that the matrix norm induced by the vector infinity norm is the
maximum among the absolute values of the row sums [11], i.e. dmax.

R++. This is guaranteed if, for any given a ∈ R++, K in (18) is
chosen so that ‖L�

A,ΨDc∆ω‖2 ≤ K a, which corresponds to

K ≥
‖L�

Ψ‖2 ‖Dc∆ω‖2

a
=

‖Dc∆ω‖2

a λ2 (LΨ)
, (19)

where ‖L�
Ψ‖2 is the spectral norm of L

�
Ψ, and λ2 (LΨ) is algebraic

connectivity of LΨ. In order to remove the dependence of λ2 (LΨ)
on Ψ, we consider the more stringent condition

K ≥
‖Dc∆ω‖2

minΨ∈Ba
{a λ2 (LΨ)}

, (20)

Using minΨ∈Ba
{a λ2 (LΨ)} = λ2 (LA) minx∈[0,2a] {a f(x)/x}

and sup
�
a minx∈[0,2a] f(x)/x} = fmax/2, we obtain the upper

bound of KU in (14) [8].
Global stability of the synchronized state. Assume now that

K > KU so that system (3) may synchronize. After rewriting (3)
as in (16), it is straightforward to check that the synchronized state
for (3) is globally asymptotically stable (according to Definition 1)
if and only if system (16) converges to an equilibrium, for any set
of initial conditions. We showed in [8] that this occurs if the point
Ψ = 0 is the globally asymptotically stable equilibrium of the fol-
lowing related system:

·

Ψ(t) = −KD
−1
c L̄ΨΨ(t), 1

T
NDcΨ(t) = 0, (21)

where L̄Ψ � BDAD̄ΨB
T with D̄Ψ diagonal matrix, whose di-

agonal entries are the (positive) weights gij(Ψj − Ψi)/(Ψj − Ψi)
indexed from 1 to E, and gij(·) is a function related to f(·) [8],
with the following properties, ∀i �= j: i) gij(x) = −gji(−x); ii)
xgij(x) > 0, ∀x �= 0 and xgij(x) = 0, ⇔ x = 0.

Using properties i) and ii) of g(·), it can be shown that the func-
tion V (Ψ) =‖ DcΨ ‖2 is a positive definite Lyapunov function
[8] for (21), which proves the globally asymptotic stability of the
equilibrium Ψ = 0 of (21).

7. REFERENCES

[1] A. Krasnopeev, J.-J Xiao, Z.Q. Luo, “Minimum Energy Decentralized Estima-
tion in a Wireless Sensor Network with Correlated Sensor Noises”, EURASIP
Jour. on Wireless Comm. and Net., pp. 473—482, 2005.

[2] Y.-W. Hong, L.F. Cheow, A. Scaglione, “A simple method to reach detection
consensus in massively distributed sensor networks”, Proc. of IEEE ISIT ’2004,
Chicago, July 2004.

[3] Y.-W. Hong, and A. Scaglione, “Distributed change detection in large scale sen-
sor networks through the synchronization of pulse-coupled oscillators”, Proc. of
IEEE ICASSP ’2004, pp. III-869–872, Lisbon, Portugal, July 2004.

[4] R. Mirollo, and S.H. Strogatz, “Synchronization of pulse-coupled biological os-
cillators”, SIAM Jour. on App. Math., vol. 50, pp. 1645–1662, 1990.

[5] D. Lucarelli, and I.-J. Wang, “Decentralized Synchronization Protocols with
Nearest Neighbor Communication”, Proc. of SenSys 2004, Baltimore MD, Nov.
2004.

[6] S. Barbarossa, “Self-organizing sensor networks with information propagation
based on mutual coupling of dynamic systems”, Proc. of IWWAN 2005, London,
UK, 2005.

[7] S. Barbarossa, and F. Celano, “Self-Organizing sensor networks designed as a
population of mutually coupled oscillators,” Proc. of IEEE SPAWC 2005, New
York, June 2005.

[8] S. Barbarossa, and G. Scutari, “Decentralized maximum likelihood estimation
for sensor networks composed of self-synchronizing locally coupled oscillators”,
submitted to IEEE Trans. on signal Proc., December 2005.

[9] X. F. Wang, and G. Chen, “Synchronization in scale-free dynamical networks:
Robustness and fragility”, IEEE Trans. on Circuits and Systems, pp. 54–62, Jan.
2002.

[10] H. K. Khalil, Nonlinear Systems, Prentice Hall, Third Ed., 2002.

[11] S.L. Campbell and C.D. Meyer, Generalized Inverses of Linear Transformations,
Dover Publications, 1991.

[12] R.P. Agarwal, M. Meehan, and D. O’Regan, Fixed Point Theory and Application,
Cambridge Univ. Press, 2001.

IV  388


