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ABSTRACT

This paper proposes a subspace-based blind channel 

estimation method for space-time coded OFDM system. 

Using only the redundancy induced by OFDM modulation 

and space-time block coding (STBC), channel state 

information (CSI) can be blindly estimated, up to two scalar 

ambiguities for Alamouti STBC or one for 4T4A3K STBC, 

even when a single receiving antenna is equipped. 

Compared with other blind channel estimation method for 

STBC-OFDM, this method needs neither pre-coding nor 

over-sampling, and thus has higher system data rate and 

lower complexity. Simulation results demonstrate the 

effectiveness of this method.
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1. INTRODUCTION 

In MIMO-OFDM system with space time block coding 

(STBC), Channel estimation is vital to symbol detection. 

There are many papers dealing with channel estimation 

algorithms for OFDM-based systems. [2] proposes a (semi-) 

blind channel estimation algorithm for STBC-OFDM 

system with precoding. CSI can be estimated up to one or 

two scalar ambiguities according to the precoding matrices 

selected. Because the algorithm needs redundant precoding, 

the overall system data rate is reduced. [4] and [5] use cyclic 

prefix (CP) and virtual carrier (VC) respectively, to blind 

identify MIMO-OFDM channels. The receiving antennae 

are often more than the transmitting antennae. [6] proposes 

blind channel estimation method for oversampled MIMO 

space-time coded system, with the assumptions that the 

transmitted signals can be represented by the generalized 

space time coding (GSTC). It hasn’t proved the 

identifiability of the algorithm. 

This paper deals with blind channel estimation for 

STBC-OFDM system with transmit diversity and single 

receive antenna. Utilizing the redundancy inherent in STBC 

and OFDM, CSI can be estimated blindly up to 1 

or 2 ambiguities according to the system configuration. The 

rest of the paper is arranged as follows: section 2 gives the 

system model; section 3 presents the channel identification 

algorithm, putting a great emphasis on the proof of 

identifiability of the algorithm; simulation results are given 

in section 4 followed by the conclusion in section 5. 

2. SYSTEM MODEL 

Suppose the system is equipped with A transmit antennae 

and only one receive antenna. Before transmission, user 

data are serial to parallel transformed to form length N data 

blocks. We denote the i-th block as iS . Then K adjacent 

blocks are space-time block coded [1] to transmit in T block 

intervals. For simplicity, we call the above system a 

TTAAKK STBC. The often-used OSTBC with two and four 

transmit antennae have the following coding matrices: 
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After STBC, OFDM modulation are performed on each of 

the transmit antennae. In order to eliminate inter block 

interference (IBI), a cyclic prefix (CP) with length P, which 

is at least equal to L, the upper bound of channel orders, is 

appended in each block. Here we assume P=L, while P>L,

which corresponds to channel order overestimation, is 

straightforward. So the CP-included OFDM block has 

length Q=N+P. Then the A branches of signals are parallel 

to serial transformed and transmitted respectively. We 

denote the A branches of transmitting signals as 

1( )u n ,…, ( )Au n .

For simplicity of analysis, we take the following 

hypotheses:  

(A1) user signals are real, such as ASK signals and other 

signals transformed to real form, so the conjugation symbol 

in STBC matrix is dispensable; 

(A2) user signals are i.i.d.; 

(A3) noise is uncorrelated with user signal and is white; 

(A4) the A sub-channels are uncorrelated; 

Based on these assumptions, the received signal is: 

1 0

( ) ( ) ( )
A L

a

i a

a i

r n h u n i n ,                 (1) 
This work was supported by NSFC (60496310, 60272046), 

NSFJS(BK2005061) and the Grant of PhD Programmes of Chinese MOE 

(20020286014).

IV ­ 3651­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



where ( )0 1

T
a a a

a Lh h hh denotes the channel impulse 

response (CIS) from the a-th transmit antenna to the receive 

antenna, with a

ih  as its i-th tap; ( )n  is the additive noise at 

receiver end.

If we consider R successive groups of STBC signals, 

then the received signals due to these transmitting blocks 

are:
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where ( 1) ( )
T

i r iQ Q r iQr  is a Q dimensional 

received vector; 
0 1

0 1

a a a

L

a

a a a

L

h h h

h h h

 the 

( )TRQ L TRQ  Toeplitz matrix formed by ah ; a the 

1TRQ enhanced transmitting signal vector from the a-th

transmit antenna, with subblocks defined as 

[ ]( 1) ( )
Ta

i a au iQ Q u iQu = + ; is the noise vector which 

has the same dimension as r ; (1: )kr denotes a vector 

formed by the first k elements of r.

Considering the operation of STBC and OFDM, the 

transmitting signal a  has the following form: 

( )( )a TR R a TR aI W I E EW                     (3) 

where ( )

H

cp

H

F
W flipud

F
 is a Q N  IFFT transform matrix 

with CP, with flipud introduced from MATLAB and ( )H

denoting Hermitian transpose; TR TRI WW , where NI

and means unit matrix with dimension N and kronecker 

product respectively; a R aE I E .
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1KRN  and 1N  signal vectors, respectively. 

The TN KN elementary matrices aE  are determined 

by STBC selected. For Alamouti STBC they take forms 

1

I
E

I
; 2

I
E

I
,

while for 4T4A3K OSTBC, 1E to 4E have forms: 

0 0 0

0 0 0
,       ,       ,       

0 0 0

0 0 0

I I I

I I I

I I I
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From equation (2) and (3), we can get: 

1

A

a TR aa
EW Hr ,                (4) 

where
1

A

a TR aa
EH W  is the equivalent channel matrix. 

Equation (4) gives the model for an ATx-1Rx STBC-

OFDM system. Based on this, a blind channel estimation 

method will be developed in the next section. 

3. CHANNEL ESTIMATION ALGORITHM 

3.1. Subspace based blind channel identification 

From equation (4), channel identifiable condition requires H,

a ( )TRQ L KRN  matrix, be full column rank. A necessary 

condition for this is ( )TRQ L KRN , i.e., /( )R L TQ KN ,

which can be satisfied by any positive integer R. From [3], 

we know that a TR aEW  is full column rank iff channel A

does not have any zeros on OFDM sub-carriers. Based on 

this result, we furthermore have the following lemma: 

lemma 1: When the A sub-channels are uncorrelated, the 

matrix H defined in (4) is full column rank with probability 

1.

If the conditions in lemma 1 hold, the noise subspace 

has dimension d TRQ KRN L , and can be denoted as 

1 2noi dV v v v . Due to the orthogonality between 

noise subspace and signal subspace, we can get:

1
0

AH H

i i a TR aa
v v EH W , 1,...,i d .            (5) 

Considering the interchangeability of Toeplitz matrix, we 

get: 
H T

i a a iv Vh ,                                 (6) 

where iV is a ( 1)L TRQ  Toeplitz matrix with first row 

[  (1, )]H

iv zeros L  and first column [ (1) (1, )]H

iv zeros L . So we 

have from equation (5) and (6):  

1 1

1[ ]( ) ( )

TR TR
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i A A i A i

TR A TR A

E E

v I V I V

E E

W W

H

W W

h h h ,(7)

where 1[ ]T T T

Ah h h  is a composite channel vector of 

the A sub-channels. 

Jointly consider all the base vectors in noise subspace 

and let
1

d

i

i

VV  and 
1

( )

TR

A

TR A

E

B I

E

W

V

W

, we finally get: 

0T Bh .                                (8) 

So the CSI can be blindly estimated as a linear combination 

of the base vectors of the left null space (of B), the 

dimension of which is determined by the rank of B. From 

the analysis of the next subsection, we know that when 

Alamouti STBC is used, B looses rank by 2; while when 

4T4A3K OSTBC is used, it looses rank by 1. These 

numbers correspond to the dimension of the null space of B,

and also to estimation ambiguities, which is common to all 
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blind channel estimation algorithm and can be eliminated by 

a few training sequences. 

3.2. Proof of the identifiability 

Suppose the true composite channel is h  and the estimated 

one is 1( )T T T

Ag g g . From the fact that they share the 

same signal subspace, we know that there exists a full rank 

matrix KRN KRNJ C  which satisfies: 

1 1

A A

a TR a a TR aa a
E J EW W                       (9) 

where a is Toeplitz matrix generated by ag  similar to a .

If we partition a  as 1 2 ,   a a a a R , with each 

subblock , ,( 1) 1 ,a i a i T a iTH H  a ( )TRQ L TQ

matrix; J as
11 1,

,1 ,

R

R R R

J J

J

J J

, with each subblock a 

KN KN  matrix; and a  in the same way as a , then 

equation (9) turns into: 

1 , 1 ,

1 1

[   ]( ) [   ]( )
A A

a a R R T a a a R R T a

a a

I E J I EW W .  (10) 

lemma 2:  When partitioned as above, the submatrix of 

a ( a ) are independent, i.e., there does not exist a nonzero 

vector 1

T

R  s.t. 1 1 2 2 ,+ + 0a a R a R , nor 

a TRQ TQ  non-zero matrix 1

T
T T

R with each 

block a  TQ TQ  matrix, s.t. 1 1 2 2 ,+ + 0a a a R R .

Due to the Toeplitz property of a  and a , the full 

column rank of WTR, we can derive from lemma 2 that J is

a block diagonal matrix with identical diagonal blocks, i.e., 

J has the form 

RJ I J ,
11 1

1

K

K KK KN KN

J J

J

J J

.           (11) 

Because different STBCs incur different matrices Ea, in 

the following we detail our proof with Alamouti STBC 

and 4T4A3K OSTBC respectively.  

3.2.1. Alamouti STBC 

For Alamouti STBC, 2T A K . Considering w.l.o.g. 

the i-th block in equation (10), we get: 

1 1

A A

ai T a ai T aa a
E J EW W .

Using the partition of ,a i  and ,a i , we get from above: 

2,2 1,2 1 2,2 1 1,2 2

2,2 1,2 1 2,2 1 1,2 2

(     +  )( )

(     + )( )

i i i i

i i i i

H H H H I W J

G G G G I W
.            (12) 

Expand the above equation and use lemma 2, we have: 

2,2 1,2 2 2,2 1,2 2(    )( ) (   )( )i i i iH H I W J G G I W        (13-a) 

1,2 1 2,2 1 2 1,2 1 2,2 1 2(    )( ) (   )( )i i i iH H I W J G G I W .  (13-b) 

Partition the following matrices as: 1 2

H

QW w w w ,

,2 1 2

a a a

a i QH h h h  and ,2 1 2

a a a

a i QG g g g ,

equation (13-a) turns into 

2 1 2 1

1 1

Q QH H H H

q q q q q q q qq q
w w J w wh h g g .        (14) 

Using lemma 2, we get: 

2 1 2 1H H H H

q q q q q q q qw w J w wh h g g , 1,...,q Q .    (15) 

Because a

qh  and a

qg are all ( ) 1TRQ L vectors, with 

nonzero parts 0 1

T
a a a

Lh h h  and 0 1

T
a a a

Lg g g

respectively, we have from equation (15) that 

2 1 2 1H H H H

l q l q l q l qh w h w J g w g w ,
0,...,

1,...,

l L

q Q
.      (16) 

Expanding equation (16), we get: 

2 1 2

11 21

2 1 1

12 22

( )

( )

H H

q l l l q

H H

q l l l q

w h J h J g w

w h J h J g w
, 0,..., ;  1,...,l L q Q .  (17) 

For fixed l, take all the q=1,…,Q into consideration and 

notice that W is full column rank, we finally get: 

2 1 2 2 1 1

11 21 12 22( ) ;   ( )l l l l l lh J h J g I h J h J g I , 0,...,l L .  (18) 

From assumption (A4) and the knowledge of matrix 

theory, we can further determine that J11, J12, J21 and J22 are 

all diagonal matrix. We denote them as: 

11 21 12 22,    ,    ,    J I J I J I J I .           (19) 

Similarly, we can get from equation (13-b) that 

1 2 1 1 2 2

11 21 12 22( ) ;   ( )l l l l l lh J h J g I h J h J g I , 0,1,...,l L . (20) 

Inserting equation (19) into equation (18) and (20), we get 

after simplifying that 
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So from equation (19), (21), (13-a) and using the Toeplitz 

property of channel matrix, we eventually arrive at: 

1 2 2 1 2 1

1 2 2 1

(  )

    

T T T T T T T

T T T T

g g g h h h h

h h h h
.        (22) 

Because 1 2

T Th h  and 2 1

T Th h  are independent, the 

estimated composite channel vector has two scalar 

ambiguities. So the matrix B looses rank by 2. 

3.2.2. 4T4A3K OSTBC 

Using the similar method, we can prove the identifiability of 

a 4T4A3K OSTBC system. Some results are as follows: 

3KN NJ I I ,                                       (23) 

1 2 3 4 1 2 3 4( ) ( )T T T T T T T T Tg g g g g h h h h .       (24) 

So the estimated composite channel vector has only one 

scalar ambiguity and matrix B looses rank by 1. 

4. SIMULATIONS

In this section, simulations are done with time invariant 

Rayleigh fading channels. The system parameters are set as: 

number of subcarriers is 32, length of CP is 4, user 

information sequences are BPSK modulated. We use 

normalized root mean squared error (NRMSE) as estimation 

criteria, which is defined as 

2
( )

1

1 1
( )

( 1)

D
i

i

NRMSE h h
h D L

,               (25) 

where D  is Monte Carlo tries, which is set to 50 in this 

paper. The ambiguity of the estimation is eliminated before 

calculating the NRMSE.

Fig. 1 gives channel estimation error (CEE) 

performances w.r.t. signal to noise ratio (SNR) and data 

length when Alamouti STBC is selected. The smooth 

window parameter R is set to 2. Fig. 2 displays CEE 

performance when 4T4A3K OSTBC is used with R set to 1. 

From these figures we can see that with 400 or more data 

points, CSI can be estimated to a relatively flat platform. 

Besides, we can see that CEE performance of 4T4A3K 

OSTBC system is relatively better than that of Alamouti 

STBC system, which is caused by surplus redundancy 

induced by the former. 

5. CONCLUSIONS

In this paper, we propose a channel estimation algorithm for 

space-time coded OFDM system and prove that the 

estimated CSI contains only two (for Alamouti STBC) or 

one (for 4T4A3K OSTBC) scalar ambiguities. The 

algorithm needs neither precoding nor oversampling, and 

thus promotes system data rate and lowers complexity. 

Simulations show that this method has high estimation 

precision. For a system with multiple receive antennae, the 

channels from all transmitting antennae to each receiving 

antenna can be estimated independently. So the algorithm 

can be easily extended to MIMO case. 
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(a) CEE vs. SNR                   (b) CEE vs. data length 

Fig. 1  2T2A2K Alamouti system 

(a) CEE vs. SNR                 (b) CEE vs. data length

Fig.2  4T4A3K OSTBC system 
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