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ABSTRACT 

Channel estimation for OFDM systems in rapidly 

time-varying environments is challenging. In this paper, 

relying on a basis expansion channel model, we propose a 

scheme for estimating channel parameters varying within a 

transmission block. Along with the estimation scheme, we 

also derive the optimal pilot sequence and optimal 

placement of pilot tones with respect to the mean square 

error (MSE) of the channel estimate. It is shown that the 

optimal pilot sequence consists of some adjacent 

equipowered and equispaced subsequences that are 

constrained by certain phase conditions. Simulation results 

demonstrate the performance of the proposed scheme in 

rapidly time-varying scenarios.  

1. INTRODUCTION 

Orthogonal frequency-division multiplexing (OFDM) has 

recently been applied widely in wireless communication 

systems due to its high data rate transmission capability, 

robustness to multi-path delay, and simple implementation. 

It has been standardized for a variety of applications, such 

as wireless local area networks (WLANs), digital television 

broadcasting, and asymmetric digital subscriber lines.  

Channel estimation is crucial for data detection and 

channel equalization of OFDM systems. There are two 

classes of channel estimation methods: one is based on 

training symbols that are a prior known to the receiver, 

whereas the other is blind. Comparing with training, blind 

channel estimation generally requires longer data record. 

Hence, it is limited to slowly time-varying channels and 

entails high complexity. For these reasons, we focus on 

training-based channel estimation in this paper.  

Identifying the channel based on training has been well 

studied. For slowly time-varying environments (e.g., the 

OFDM block duration is less than 10% of the channel 

coherence time), the channel can be approximately assumed 
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constant or varying in a linear fashion [1] over an OFDM 

block, and the estimation schemes under these two 

assumptions can be found in [2, 3] and [4], respectively. 

However, for rapidly time-varying environments (e.g., the 

OFDM block duration is more than 10% of the channel 

coherence time), the above two assumptions no longer hold 

and give rise to an error floor. Channel estimation and the 

optimal training sequences design in such scenarios become 

critical. In [5], optimal training over doubly selective 

channels is proposed, but it is only for pilot symbol assisted 

modulation (PSAM) case. In this paper, relying on basis 

expansion channel model (BEM) [5, 6, 7], we propose an 

estimation scheme of rapidly time-varying channels for 

OFDM systems. Along with the estimation scheme, we also 

derive the optimal pilot sequence and optimal placement of 

the pilot tones with respect to (w.r.t.) the mean square error 

(MSE) of the channel estimate. It is shown that, to obtain 

the minimum MSE, the optimal pilot sequence must consist 

of some adjacent equipowered and equispaced subsequences 

that are constrained by certain phase conditions.  

This paper is organized as follows. In Section II, we 

present a description of the OFDM system model based on 

basis expansion channel model. In Section III, we propose 

the channel estimation scheme and derive the optimal pilot 

sequence. Section IV provides simulation results, and 

Section V concludes the paper. 

Notation: IN and 0N × M denote the N × N identity matrix 

and the N × M all-zero matrix, respectively. diag(x) stands 

for the diagonal matrix with the column vector x on its 

diagonal, ·  denotes integer ceiling.   

2. SYSTEM MODEL 

A discrete-time baseband OFDM system model is depicted 

in Fig. 1. 
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Fig. 1. Baseband OFDM system Model 
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After inserting pilots to the information data sequence, IFFT 

block is used to transform the data sequence {X(k)} of 

length N into time domain signal {x(n)}. A cyclic prefix of 

length g is then added to prevent intersymbol interference. 

We assume that g L 1, where L is the maximum channel 

length. After removing the cyclic prefix, we can express the 

received signal as 
1

0

( ) ( ; ) ( ) ( ), 0 1
L

l

y n h n l x n l w n n N   (1) 

where h(n;l) is the sampled time-varying channel impulse 

response, and w(n) is additive white Gaussian noise with 

zero mean and variance 2

w . Then the output of the FFT at 

the receiver can be expressed as [4] 
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where 0 1m N ; Y(m), X(m), and W(m) are the FFTs of 

y(n), x(n), and w(n), respectively; G(m, k) is evaluated as 
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In rapidly time-varying environments, since we can 

express h(n;l) as [5] 
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(3) can be rewritten as 
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where Q = 2 fmaxNTs , fmax is the maximum Doppler 

spread, Ts is the sample interval. Similar to [5], we assume 

that the coefficients hq(l) are zero-mean, complex Gaussian 

random variables with variance 2
,q l .

Since G(m, k) is nonzero only with q Q/2 + k – m ,

(5) can be further expressed as 
1

2 /

0

( ) , ( / 2) mod
( , )

0, otherwise.

L
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q

l

h l e k m q Q N
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It can be seen from (6) that given m, each q  {0, …, Q} is 

corresponding to a certain k  {0, …, N – 1} which leads to 

G(m, k)  0. By defining 
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we can rewrite (2) as 
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Note that / 2
m
Qk m .

 3. CHANNEL ESTIAMTION AND PILOT 

SEQUENCE DESIGN 

3.1. Channel Estimation 

As shown (4), estimation of h(n;l) amounts to estimating (Q

+ 1)L coefficients grouped in the (Q + 1)L × 1 vector

0[ , , ]T T T

Qh h h                (9) 

where hq = [hq(0), …, hq(L – 1)]T, 0 q Q. Thus, by 

defining 1 × L row vector F(k) = [1, …, exp( – j2 k(L – 1) / 

N )], we can express Y(m) as a function of h , i.e., 
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From (10) we can see that, different from the 

time-invariant case, the received signal Y(m) is not only 

affected by X(m) (i.e., / 2( )m
QX k ), but also affected by other Q

transmitted data. Thus, if X(m) is selected as the pilot, in 

order to estimate h , those Q transmitted data affecting the 

same received signal Y(m) should also be selected as the 

pilots. Assuming that corresponding to q = Q/2, there are P

pilots placed at tones m(1), …, m(P) (i.e., (1)

/ 2( )m

QX k , …, 

( )

/ 2( )m P

QX k are pilots), we can form P × (Q + 1)L system of 

linear equations

(1) (1) (1) (1)
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where  = [Y(m(1)), …, Y(m(P))]T  and W = [W(m(1)), …, 

W(m(P))]T. As mentioned earlier, since ( )
1{ ( )}m p P

q pX k , q

{0, …, Q} are all pilots, the number of all pilot tones is M = 

(Q + 1)P, and their positions ( ){ }m p
qk can be obtained through 

(7). It implies that once the positions of pilots corresponding 

to q = Q/2 are given, the positions of pilots corresponding to 

other q can then be determined.  

By defining P×L matrix (1) ( )[ ( ),..., ( )]T m T m P T
q q qk kF F F ,

and P × 1 vector (1) ( )[ ( ),..., ( )]m m P T
q q qX k X kX , we can 

express (11) in a compact form 

0 0[diag( ) , ,diag( ) ]Q QY X F X F h W

Ah W
     (12)

From (12) we know that the pilot sequence actually consists 

of Q + 1 adjacent subsequences that are of the same length P.

Each subsequence is denoted by qX and with the set of pilot 

tones (1) ( ){ ,..., }m m P
q q qk k . In other words, if denote the 

pilot sequence by X and the set of pilot tones by , we have  

0[ ,..., ]T T T
QX X X and  = { 0, …, Q}.

According to (12), the least squares (LS) estimate of 

h can then be obtained as

† †ˆ
.h A Y h A W              (13)

We require P  (Q + 1)L (i.e., M  (Q + 1)2L) such that the P
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× (Q + 1)L matrix A is of full column rank (Q + 1) L.

After h is estimated, the time-varying channel impulse 

response h(n; l) can finally be acquired through (4). 

3.2. Optimal Pilot Sequence Design 

From (13), the MSE of the LS estimate is given by
2

† †

2

1

1 ˆ
MSE E

( 1)

1
tr{ E{ } }

( 1)

tr{( ) }
( 1)

HH

Hw

Q L

Q L

Q L

h h

A WW A

A A

      (14)

It has been shown in [3] that the minimum MSE will be 

achieved if AH
A = I(Q+1)L, where  is a fixed power. Thus, 

according to this condition, we will derive the optimal pilot 

sequence and optimal placement of the pilot tones in the 

following.

Let us first rewrite AH
A as

0,0 0,

,0 ,

Q

H

Q Q Q

B B

A A

B B

            (15)

where Bq,s is the (q, s)th L × L sub-matrix, which is given by

, diag( ) diag( )H H

q s q q s sB F X X F .        (16)

As mentioned before, to obtain the minimum MSE of the 

estimate, we require AH
A = I(Q+1)L, i.e., 

L

,

, if

, if .
q s

L L

q s

q s

I
B

0
           (17)

In fact, (17) shows the constraint between two pilot 

subsequences. 

Now, we will consider the case q = s in (17), which 

shows the condition that each pilot subsequence itself 

should satisfy. Let p
q denote the power on the ( )m p

qk th 

pilot tone. We then obtain 

1

, Ldiag ,...,H P

q q q q q qB F F I .       (18)

After calculating the matrix multiplication in (18), we can 

obtain 2L – 1 equations 

( )
(2 / )

1

0, 1 ,..., 1,1,..., 1

, 0.

m p
q

P
j N kp

q

p

L L
e (19)

For a minimum number of pilot tones needed in the 

subsequence, the above condition is satisfied if and only if 

/
p

q P and ( ) ( 1) /m p
q qk k p N P , where kq

{0, …, N /P – 1} is some offset. It means that the pilots 

belong to the same subsequence must be uniformly placed 

and with the same transmitted power /P, i.e., each pilot 

subsequence must be equipowered and equispaced. In 

practical systems, for cheap, fast, and simple 

implementation of the DFT, the number of subcarriers N is 

usually chosen to be a power of 2. Since P should divide N,

it should also be a power of 2. Hence, keeping in mind that 

P  (Q + 1) L, we generally set 2log (( 1) )
2

Q L
P .

Next, we will look at the case q  s in (17), which 

indicates the constraint condition between two different 

pilot subsequences. Assume that the pilot subsequences have 

already satisfied (19). After calculating matrix multiplexing 

at the right hand side of (16), we can finally obtain the 

(r,t)th element of Bq,s as 

( ) ( ) ( )
, (2 )( )

, ,

1

[ ] ( )
m p m p m p
q s q s

P
j j N r k t k

q s r t

p

P e eB     (20) 

where ( )
,

m p
q s denotes phase difference between ( )( )m p

qX k

and ( )( )m p
sX k . By defining q,s = q – s, we can obtain

,
m m
q s q sk k or ,q s N according to (7). Thus, (20) 

can be rewritten as

( ) ( )
,,

(2 )( )(2 )

, ,

1

[ ] ( ) .
m p m p
q s qq s

P
j N r t kj N t

q s r t

p

P e eB (21)

It is clear from (21) that the second part of (17), i.e., Bq,s = 

0L×L with q s, is satisfied when 

( ) ( )
, (2 )( )

1

0, , {0,..., 1}

, , {0,..., }, with .

m p m p
q s q

P
j N r t k

p

e r t L

q s Q q s

(22)

The above condition is satisfied if and only if 
( ) ( )

, (2 )m p m p
q s qN k , where  \ {1–L, …, L–1}.

In summary, the optimal pilot sequence X can be 

designed as follows. 

1. Select P as 2log (( 1) )
2

Q L
P .

2. Choose an equispaced set {m(1),…, m(P)} as Q/2 . 

One possible choice is m( p) = p + N /P.

3. Calculate (1) ( ){ ,..., }m m P
q q qk k with q  {0,…,Q} and 

q Q/2 according to Q/2. Then, the optimal placement 

of pilot tones can be obtained by  = { 0, …, Q}.

4. Choose an arbitrary sequence of length P as the 

subsequence / 2QX . Let / 2
p

Q denote the phase of 

( )

/ 2( )m p

QX k  (i.e., ( ( ))X m p ). Then, the phase of 

( )( )m p
qX k  in the subsequence qX  must be selected as 

/ 2 (2 ) ( )p
qQ N m p , where q should satisfy 1) q

 \ {1 – L, …, L – 1}; and 2) q s  \ {1 – L, …, 

L – 1} with q, s,  {0, , Q} \ {Q/2} and q s. One 

possible choice is q = (q Q/2) L.

Then, let the modulus of any pilot subsequence qX

be P . The optimal pilot sequence can finally be 

acquired as 0[ ,..., ]T T T
QX X X .

4. SIMULATIONS 

In the simulations, we consider a QPSK-OFDM system with 

subcarriers N = 128, carrier frequency f0 = 5 GHz and 

sampling period Ts = 10.5 s. The maximum mobile speed is 
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set to vmax = 160 km/hr and the maximum channel length is 

L = 5. It has been shown in [6, 7] that BEM can approximate 

Jakes’ model accurately. Thus, in this paper, each channel 

tap is generated by BEM. With the system parameters, we 

found that Q = 2. Similar to [5], all the channel coefficients 

hq(l) are generated as independent, standardized, complex 

Gaussian random deviates. The multipath intensity profile is 

selected as ( ) exp( 0.1 / )c sT , q , and the Doppler 

power spectrum is chosen as 2 2 1
max( ) ( )cS f f f

when maxf f ; otherwise, ( ) 0cS f , l . The variance of 

hq(l) is defined as 2
, ( ) ( /( ))q l c s c slT S q NT , where 

1
,( ( ) ( /( )))l q c s c slT S q NT  denotes the normalizing 

factor. The performance of the system is measured in terms 

of the MSE and the bit error rate (BER) versus SNR based 

on channel estimate. In all simulations, we select P as P = 

16 which leads to the minimum number of pilot tones, i.e., 

M = 48, and choose the set Q/2 = {2, 10, 18, 26, 34, 42, 50, 

58, 66, 74, 82, 90, 98, 106, 114, 122} which leads to  = {1, 

2, 3, 9, 10, 11, 17, 18, 19, 25, 26, 27, 33, 34, 35, 41, 42, 43, 

49, 50, 51, 65, 66, 67, 73, 74, 75, 81, 82, 83, 89, 90, 91, 97, 

98, 99, 105, 106, 107, 113, 114 ,115, 121, 122, 123}. 

Fig. 2 and Fig. 3 compare the MSE and the BER 

performance of the proposed channel estimation scheme 

with the optimal pilot sequence derived in this paper and the 

equipowered random pilot sequence, respectively. The BER 

performance with perfect channel knowledge is also shown 

in Fig. 3 for reference. As shown in the figures, our channel 

estimation approach is effective in rapidly time-varying 

scenarios, and using the optimal pilot sequence derived in 

the paper outperforms using random pilot sequence. For 

instance, we can see about 6.5 dB gain in SNR for the 

optimal pilot sequence over the random pilot sequence at all 

MSEs and 7.5 dB gain in SNR at BER = 10 2.

5. CONCLUSIONS 

In this paper, relying on the basis expansion channel model, 

we proposed a pilot-based estimation scheme of fast fading 

channel for OFDM systems. To obtain the minimum MSE 

of the channel estimate, we also derived the optimal pilot 

sequence as well as the optimal placement of pilot tones. It 

is shown that the optimal pilot sequence consists of some 

adjacent subsequences, which are equipowered, equispaced, 

and constrained by certain phase conditions.  

6. REFERENCES 

[1] W. Jeon, K. Chang, and Y. Cho, “An equalization technique 

for orthogonal frequency-division multiplexing systems in 

time-variant multipath channel,” IEEE Trans. Commun., vol. 

47, pp. 27 32, January 1999. 

[2] J.-J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. 

O. Börjesson, “On channel estimation in OFDM systems,” in 

Proc. IEEE Vehic. Technol. Conf., vol. 2, Chicago, IL, July 

1995, pp. 815-819. 

Fig. 2  MSE of the proposed estimation scheme with random and 

optimal pilot sequences 

Fig. 3  BER of the proposed estimation scheme with random and 

optimal pilot sequences 

[3] I. Barhumi, G. Leus, and Marc Moonen, “Optimal training 

design for MIMO OFDM systems in mobile wireless 

channels,” IEEE Trans. Signal Processing, vol. 51, pp. 1615 

1624, June 2003. 

[4] A. Stamoulis, S.N. Diggavi, and N. Al-Dhahir, “Intercarrier 

interference in MIMO OFDM,” IEEE Trans. Signal 

Processing, vol. 50, pp. 2451 2464, October 2002. 

[5] X. L. Ma, G. B. Giannakis, and S. Ohno, “Optimal training for 

block transmissions over doubly selective wireless fading 

channels,” IEEE Trans. Signal Processing, vol. 51, pp. 

1351 1366, May 2003. 

[6] G. B. Giannakis and C. Tepedelenlio lu, “Basis expansion 

models and diversity techniques for blind identification and 

equalization of time-varying channels,” Proc. IEEE vol. 86, 

pp. 1969 1986, October 1998. 

[7] X. L. Ma and G. B. Giannakis, “Maximum-Diversity 

transmissions over doubly selective wireless channels,” IEEE 

Trans. Inform. Theory, vol. 49, pp. 1832-1840, July 2003. 

IV  360


