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ABSTRACT

Constrained optimization techniques, based on the maximum signal-
to-noise-plus-interference (SINR) criterion, are considered for joint
equalization and narrowband interference (NBI) suppression in or-
thogonal frequency-division multiplexing (OFDM) systems. Specif-
ically, we show that a recently proposed linear receiver [3], which
mitigates, in the minimum mean-output-energy sense, the NBI con-
tribution at the receiver output, can be regarded as the solution of a
constrained maximum-SINR optimization criterion and, moreover,
admits an interesting three-stage decomposition. This decomposi-
tion improves the receiver robustness against errors in the estimated
statistics of the received data and, most important, allows one to
greatly simplify the channel estimation problem. Computer simu-
lations are carried out to illustrate the performance improvements
achievable by adopting the constrained maximum-SINR equalizer,
in comparison with its unconstrained counterpart.

1. INTRODUCTION

In many applications, orthogonal frequency-division multiplexing
(OFDM) systems are expected to operate in the presence of strong
narrowband interference (NBI) [1, 2, 3]. In these scenarios, the
system performance becomes severely limited by interblock inter-
ference (IBI) and interchannel interference (ICI), as well as NBI.
In the presence of the NBI, the conventional zero-forcing (ZF) re-
ceiver exhibits very poor performances [3], since it merely nullifies
IBI and ICI, without taking any specific measure to counteract noise
and NBI effects. A simple strategy to jointly counteract IBI, ICI
and NBI is the adoption of bit-loading techniques at the transmitter,
whose use, however, requires knowledge of the NBI parameters (i.e.,
bandwidth and frequency-offset) at the transmitting side, which is a
quite unrealistic assumption in wireless scenarios. When the cyclic
prefix (CP) length exceeds the discrete-time channel length, several
data-independent reception strategies (see, e.g., [1]), which exploit
the unconsumed portion of the CP not contaminated by the channel,
have been proposed to increase the robustness of the receiver against
NBI and noise. On the other hand, certainly more effective, but also
more complex to implement, are data-dependent techniques, which
are built from the received data in order to minimize noise and/or
interference effects. A minimum mean-square error (MMSE) data-
dependent approach to NBI rejection is proposed in [2], based on a
linear interference canceler that estimates, according to the MMSE
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criterion, the NBI at the receiver, under the assumption of know-
ing its second order statistics. A different data-dependent technique
has been recently proposed in [3], where joint equalization and NBI
rejection is performed by resorting to the minimum mean-output-
energy (MMOE) criterion, without knowledge of the NBI param-
eters. However, the MMOE-based receiver of [3], as well as the
equalizers of [1, 2], require a preventive estimation of the channel
which, in the presence of a severe NBI, is a quite challenging task.

In this paper, after showing that the MMOE-based receiver pro-
posed in [3] can be regarded as the result of a constrained max-
imum signal-to-noise-plus-interference (SINR) design, which con-
fers robustness to the receiver when it is implemented by using short
data records, we enlighten that the equalizer of [3] consists of three
stages: the first stage deterministically suppresses IBI, by discarding
the unconsumed portion of the CP; the second stage instead performs
a data-dependent pre-filtering of the signal at the output of the first
stage, in order to mitigate NBI, without requiring channel knowl-
edge; the last stage, operating in a nearly NBI-free environment, re-
covers the desired symbols by resorting to one-tap frequency equal-
ization (FEQ). Moreover, relying on this decomposition, we propose
a simple and effective trained-based channel estimation method.

2. SYSTEM MODEL

Let us consider an OFDM system with M subcarriers, Q of which
are utilized, whereas the remaining Mvc � M − Q are virtual car-
riers (VCs). The information data stream s(n), with n ∈ Z, is first
converted into Q parallel substreams sq(n) � s(nQ + q), where
the index q ∈ {0, 1, . . . , Q − 1} refers to the subcarrier. By assum-
ing for now that the Mvc virtual carriers are inserted at the end of
the nth data block s(n) � [s0(n), s1(n), . . . , sQ−1(n)]T ∈ C

Q,
one obtains, after VCs insertion, the new data block s̃(n) = S s(n),
where S � [IQ,OQ×Mvc ]

T ∈ R
M×Q is tall and full-column rank,

with IQ ∈ R
Q×Q denoting the identity matrix. To allow for VCs

insertion in arbitrary positions, we introduce a row-permutation ma-
trix P ∈ R

M×M , i.e., s̃(n) = Θs(n), with Θ � PS ∈ R
M×Q.

Then, the block s̃(n) is subject to the Inverse Discrete Fourier Trans-
form (IDFT), and the resulting vector can be written as ũ(n) =
WIDFT s̃(n) = WIDFT Θs(n), where WIDFT represents the unitary
symmetric IDFT matrix, and its inverse WDFT � W−1

IDFT = W∗
IDFT

defines the DFT matrix. Then, a cyclic prefix (CP) of length Lcp is
inserted at the beginning of ũ(n), thus obtaining the extended block

u(n) =

[
Icp

IM

]
︸ ︷︷ ︸

Tcp∈RP×M

ũ(n) = Tcp WIDFT Θ︸ ︷︷ ︸
T0∈CP×Q

s(n) = T0 s(n) , (1)
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where P � M + Lcp, matrix Icp ∈ R
Lcp×M is obtained from the

identity matrix IM by picking its last Lcp rows, and T0 is the overall
full-column rank precoding matrix. Vector u(n) undergoes parallel-
to-serial conversion, and the resulting sequence feeds a digital-to-
analog converter (DAC), operating at rate 1/Tc = P/T , where
Tc and T denote the sampling and the symbol period, respectively.
After up-conversion, the continuous-time signal at the DAC out-
put is transmitted over a multipath channel, which is modeled as
a linear time-invariant system. If the impulse response hc(τ) of
the composite channel spans Lh < P sampling periods, that is,
hc(τ) ≡ 0 for τ �∈ [ 0, Lh Tc], after ideal carrier-frequency recovery
and sampling at the rate 1/Tc, the expression of the nth (n ∈ Z)
received data block r̃(n) ∈ C

P can be expressed as (see, e.g., [3])
r̃(n) = H̃0 T0 s(n) + H̃1 T0 s(n − 1) + j̃(n) + w̃(n), where
j̃(n) ∈ C

P and w̃(n) ∈ C
P account for the interference and ther-

mal noise, respectively, whereas H̃0 and H̃1 ∈ C
P×P are Toeplitz

lower- and upper-triangular matrices (see [3] for details), depending
on the discrete-time channel h(m) � hc(mTc), which is a causal
finite impulse response (FIR) filter of order Lh, i.e., h(m) ≡ 0 for
m �∈ {0, 1, . . . , Lh}, with h(0), h(Lh) �= 0.

In the sequel, the following assumptions about symbols, inter-
ference, and noise are considered: (a1) the information symbols
s(n) are modeled as a sequence of zero-mean independent and iden-
tically distributed (i.i.d.) circular random variables, with variance
σ2

s � E[|s(n)|2]; (a2) the interference vector j̃(n) is modeled as
a zero-mean complex circular wide-sense stationary (WSS) random
vector, statistically independent of s(n); (a3) the noise vector w̃(n)
is modeled as a zero-mean complex circular white Gaussian random
vector, statistically independent of both s(n) and j̃(n), with auto-
correlation matrix R̃ww � E[w̃(n) w̃H(n)] = σ2

w IP .

3. CONSTRAINED MAXIMUM-SINR EQUALIZATION

A linear (zeroth-order) equalizer consists of a bank of Q FIR filters
yq(n) = g̃H

q r̃(n), q ∈ {0, 1, . . . , Q−1}, where g̃q ∈ C
P is the qth

equalizer weight vector, aimed at recovering the qth symbol sq(n)
belonging to the nth symbol block s(n). The equalizer output can
be expressed as y(n) = G̃ H̃0 T0 s(n) + G̃ H̃1 T0 s(n − 1) +

G̃ [̃j(n) + w̃(n)], with y(n) � [y0(n), y1(n), . . . , yQ−1(n)]T ∈
C

Q and G̃ � [g̃0, g̃1, . . . , g̃Q−1]
H ∈ C

Q×P . After equalization,
the qth entry of y(n) is quantized to the nearest (in Euclidean dis-
tance) information symbol to form the estimate of the symbol be-
longing to the qth data substream. Because of the FIR nature of
the channel, the interblock interference (IBI) caused by the symbol
block s(n− 1) can be deterministically suppressed by requiring that
G̃ H̃1 T0 = OQ×Q (IBI-free condition). Indeed, it can be shown
that, by accounting for the full-column rank nature of T0, for the
upper-triangular structure of H̃1, and for the fact that h(Lh) �= 0,
the IBI-free condition admits the canonical solution

G̃ = [OQ×Lh ,G] = G [ON×Lh , IN ]︸ ︷︷ ︸
RLh

∈RN×P

= GRLh , (2)

where G � [g0,g1, . . . ,gQ−1]
H ∈ C

Q×N is an arbitrary matrix,

with N � P − Lh > 0. Decomposition (2) leads to the two-stage
structure for the canonical FIR IBI-free equalizer, depicted in Fig. 1,
wherein the first stage evaluates r(n) � RLh r̃(n) ∈ C

N and hence
nullifies IBI by discarding the first Lh samples of r̃(n), whereas
the second stage builds y(n) = Gr(n), where G can be chosen
so as to mitigate the interchannel interference (ICI), NBI and noise.

y(n)r̃(n)
r(n)

RLh G

G̃

Fig. 1. The two-stage structure of the FIR IBI-free equalizer.

Accounting for the expression of r̃(n), the data block r(n) at the
input of the second stage is

r(n) = HT0︸ ︷︷ ︸
F0∈CN×Q

s(n) + j(n) + w(n) , (3)

where H � RLhH̃0 ∈ C
N×P is the Toeplitz matrix with first col-

umn and row [h(Lh), 0, . . . , 0]T and [h(Lh), . . . , h(0), 0, . . . , 0],
whereas j(n) � RLh j̃(n) ∈ C

N and w(n) � RLh w̃(n) ∈ C
N

represent the NBI and the noise vectors.

3.1. Unconstrained maximum-SINR optimization

For any q ∈ {0, 1, . . . , Q − 1}, denoting with sq(n) ∈ C
Q−1 the

vector including all elements in s(n) except for the (q + 1)th en-
try sq(n), and with F0,q ∈ C

N×(Q−1) the matrix including all the
columns in F0 except for the (q+1)th column f0,q ∈ C

N and, more-
over, accounting for (3), the equalizer output yq(n) corresponding to
the qth (used) subcarrier can be expressed as

yq(n) = gH
q f0,q sq(n) + gH

q [F0,q sq(n) + j(n) + w(n)]︸ ︷︷ ︸
d(n)∈CN

, (4)

where the vector1 d(n) collects the overall disturbance at the qth
subcarrier, i.e., ICI, NBI and noise. A reasonable optimization crite-
rion for deriving the qth column gq of G consists of maximizing the
output SINR at the qth subcarrier which, accounting for assumptions
(a1)–(a3), can be written as

SINRq(gq) �
E[|gH

q f0,q sq(n)|2]
E[|gH

q d(n)|2] =
σ2

s |gH
q f0,q|2

gH
q Rdd gq

, (5)

where Rdd � E[d(n)dH(n)] ∈ C
N×N is the autocorrelation ma-

trix of d(n). By resorting to Cauchy-Scharz’s inequality, it can be
readily proved that the optimal vector maximizing the object func-
tion (5) is given by gq,opt = �q R−1

dd f0,q , with �q ∈ C − {0}, and
the achievable (maximum) SINR at the qth subcarrier turns out to be
SINRq,opt � SINRq(gq,opt) = σ2

s fH
0,q R−1

dd f0,q .
An equalizer belonging to the maximum-SINR family is [4] the

MMOE solution gq,mmoe = (fH
0,qR

−1
rr f0,q)

−1 R−1
rr f0,q , which min-

imizes the mean-output-energy MOEq � E[|yq(n)|2] at the qth sub-
carrier, subject to gH

q f0,q = 1, where the imposed constraint guar-
antees no desired symbol cancellation. Accounting for gq,mmoe and
let � denote Hadamard product of two matrices, the matrix G in the
second stage (see Fig. 1) assumes the form

Gmmoe � [g0,mmoe,g1,mmoe, . . . ,gQ−1,mmoe]
H

= [(FH
0 R−1

rr F0) � IQ]−1 FH
0 R−1

rr , (6)

1For the sake of notation simplicity, we do not explicitly indicate the de-
pendence of d(n) on the subcarrier index q.
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which, by resorting to standard Lagrangian techniques, turns out to
be the solution of the constrained matrix optimization criterion

Gmmoe = arg min
G∈CQ×N

E[‖y(n)‖2] , subject to diag(GF0) = 1 ,

(7)
with 1 � [1, . . . , 1] ∈ R

Q. As it is well-known, another equalizer
that maximizes (5) is the MMSE equalizer. In practice, the syn-
thesis of the MMOE equalizer (or equivalently MMSE) poses two
important problems. First, the matrix Rrr is unknown and, thus, an
estimate Ĝmmoe of Gmmoe can be only obtained by replacing Rrr in
(6) with the sample autocorrelation matrix R̂rr of r(n), estimated
over K symbol intervals. Following [5], it can be shown [6] that the
SINR degradation when the MMOE second stage is synthesized by
using Ĝmmoe = [ĝ0,mmoe, ĝ1,mmoe, . . . , ĝQ−1,mmoe]

H is given by

SINRq(ĝq,mmoe) =
SINRq,opt

1 + N−1
K

SINRq,opt
, (8)

which shows that, even when (ideally) SINRq,opt → +∞, due to the
effect of the finite sample-size K, the SINR saturates to the fixed
value K/(N − 1). This SINR value can lead to an unacceptable bit-
error rate (BER) floor already for moderate values of the number M
of subcarriers. The second, and, perhaps, most important problem,
is represented by the fact that the synthesis of the MMOE equalizer
requires the knowledge of the composite matrix F0 = HT0, which
depends on the (unknown) channel matrix H and on the (known)
precoding matrix T0. This means that, before synthesizing the sec-
ond stage in Fig. 1, one has to preliminarily estimate the channel vec-
tor h � [h(0), h(1), . . . , h(Lh)]T ∈ C

Lh+1 at the output of the first
stage, i.e., on the basis of the vector model (3). Unfortunately, due to
the NBI, conventional trained-based channel estimation techniques
for OFDM systems (see, e.g., [7]) exhibit very poor performances,
for low to moderate values of the signal-to-interference ratio (SIR).

3.2. Constrained maximum-SINR optimization

We have shown that the SINR degradation at the qth subcarrier due
to the finite sample-size increases as the number of degrees of free-
dom N−1 of the MMOE equalizer increases. A simple and effective
way to reduce this degradation is thus to suitably reduce the degrees
of freedom of the second stage, which is equivalent to adding con-
straints to the matrix optimization problem (7). So doing, one ob-
tains a different second stage which is referred hereinafter to as the
constrained MMOE (CMMOE) equalizer. On the other hand, as it
is intuitively expected, reducing the number of the degrees of free-
dom entails a reduction of the disturbance (i.e., ICI, NBI and noise)
suppression capabilities with respect to the MMOE equalizer since,
in the ideal situation when Rrr is perfectly known, the CMMOE
equalizer does not maximize the output SINR for each subcarrier. A
CMMOE equalizer was recently proposed in [3] for pure CP-based
OFDM systems in the presence of NBI, wherein the equalizer’s syn-
thesis in the second stage is carried out by minimizing the same
object function in (7), subject to the ICI-free constraint, namely
Gcmmoe = arg minG∈CQ×N E[‖y(n)‖2] , subject to GF0 = IQ,
whose solution is given by Gcmmoe = (FH

0 R−1
rr F0)

−1 FH
0 R−1

rr .
The CMMOE equalizer exhibits two interesting properties which
were not evidenced in [3]. First of all, as it is previously stated
and as it is also shown experimentally in Section 4, incorporation of
the ICI-free constraint renders the estimated filtering matrix Ĝcmmoe

more robust against errors in sample autocorrelation matrix R̂rr, i.e.,
in comparison with the MMOE equalizer, the BER floor of the es-
timated CMMOE equalizer is significantly less marked. It is worth

Channel
estimation

y(n)r̃(n) r(n) x(n)
RLh H−1

ucY cmmoe

Fig. 2. The three-stage structure of the IBI-free CMMOE equalizer.

noting that, for the problem at hand, conventional correlation struc-
tured techniques for improving the estimation accuracy of Rrr can-
not be applied, due to the unknown structure of the NBI. The sec-
ond property regards the channel estimation issue. Preliminarily,
we observe that, when Lcp ≥ Lh, matrix F0 can be linearly pa-
rameterized as F0 = Q0 Huc, with Q0 � ΦWIDFT Θ ∈ C

N×Q

and Φ � [IT
φ , IM ]T ∈ R

N×M , where Iφ ∈ R
(Lcp−Lh)×M is ob-

tained from IM by picking its last Lcp − Lh rows and the diago-

nal matrix Huc � diag[H(ej 2π
M

i0), H(ej 2π
M

i1), . . . , H(ej 2π
M

iQ−1)]

collects the values of the transfer function H(z) �
∑Lh

n=0 h(n) z−n

at each used subcarrier. Observe that Q0 is a full column rank known
matrix, whereas matrix Huc is unknown and it is assumed to be non-
singular in the sequel. Relying on this parameterization, one has [6]

Gcmmoe = H−1
uc (QH

0 R−1
rr Q0)

−1 QH
0 R−1

rr︸ ︷︷ ︸
Y cmmoe∈CQ×N

. (9)

Interestingly, eq. (9) leads to the three-stage structure for the IBI-
free CMMOE equalizer, depicted in Fig. 2. The first stage is the
same as that reported in Fig. 1 and is aimed at deterministically sup-
pressing the IBI. The second stage performs a linear filtering of the
vector r(n) and its input-output relationship is x(n) = Y cmmoe r(n).
Remarkably, matrix Y cmmoe can be regarded as the solution of the
constrained optimization Y cmmoe = arg minY∈CQ×N E[‖Y r(n)‖2]
subject to Y Q0 = IQ. In other words, the second stage in Fig. 2
suppresses the NBI contribution, by minimizing its output power,
subject to the linear matrix constraint Y Q0 = IQ which is aimed at
preserving the desired symbol block s(n) in (3), without requiring
channel knowledge. Therefore, if Y cmmoe is able to suitably suppress
the NBI, the nearly NBI-free output of the second stage is given by

x(n) ≈ Huc s(n) + Y cmmoew(n) = S(n) W h + Y cmmoew(n) ,
(10)

where S(n) � diag[s0(n), s1(n), . . . , sQ−1(n)] and the [W ]i,� en-
try of W ∈ C

Q×Lh is given by [W ]i,� = e−j2(π/N)i�, where
i ∈ Iuc, with Iuc � {i0, i1, . . . , iQ−1} denoting the used subcarrier
positions, and � ∈ {0, 1, . . . , Lh}. Thus, the last stage has simply
to perform one-tap FEQ for the used subcarriers by means of the di-
agonal matrix H−1

uc . As it is apparent from (9), when Mvc = 0 and
Lcp = Lh, the CMMOE receiver boils down to the conventional ZF
one. As regards the equalizer complexity, observe that, with respect
to the conventional ZF equalizer, the additional computational load
of the CMMOE receiver lies in the synthesis of the data-dependent
component Y (b)

cmmoe. The three-stage decomposition of the CMMOE
equalizer shows that, as reported in Fig. 2, channel estimation can be
conveniently performed at the output of the second stage [i.e., on the
basis of (10)] rather than at the output of the first stage. Therefore,
let us assume that the data block s(n), with n ∈ {0, 1, . . . , K − 1},
contains Q training symbols which are known at the receiver, we
propose to estimate the channel vector h by means of the following
least-squares (LS) optimization problem

ĥ = arg min ‖x(n) − S(n) W h‖2 , (11)
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Fig. 3. ABER versus SNR.

whose solution is ĥ =
[WHSH(n)S(n) W]−1 WHSH(n)x(n).

In practice, the third stage performs FEQ by means of the diagonal

matrix Ĥ−1

uc , whose entries are given by the transfer function of the
estimated channel ĥ, evaluated at each used subcarrier {ej 2π

M
iq}Q−1

q=0 .

4. SIMULATION RESULTS

We consider a pure CP-based OFDM system employing M = Q =
32 subcarriers, with a 16-QAM signaling and a CP of length Lcp =
10, and transmitting over a fourth-order nonminimum-phase FIR
channel modeled as in [3]. The baseband continuous-time NBI is
modeled as a QPSK signal, employing a raised cosine modulation
pulse, with symbol period TI = T/2 and carrier frequency-offset
(with respect to the OFDM system) fI = 4.5/Tc; in this case,
the NBI exhibits a null-to-null bandwidth equal to BI = 8/(P Tc)
and, thus, corrupts about six OFDM subcarriers. Accordingly to (3),
the signal-to-noise ratio is defined as SNR � σ2

s ‖F0‖2/(N σ2
w),

whereas the SIR is defined as SIR � σ2
s ‖F0‖2/E[‖j(n)‖2]. As a

figure of merit for equalization, we adopt the average BER (ABER),
defined as ABER � Q−1 ∑Q−1

q=0 BER(q), where BER(q) is the BER
relative to the qth used subcarrier, which is numerically evaluated by
averaging over 106 OFDM symbols. Instead, to evaluate the chan-
nel estimation error, we adopt the (normalized) mean-squared error
(MSE), defined as MSE � E[‖h − ĥ‖2]/(Lh + 1), with Lh = 4,
which is evaluated by averaging over 200 Monte Carlo trials.

In Fig. 3, we compare the performances of the CMMOE and
the MMOE equalizers, as function of the SNR, where the SIR is
kept constant to 5 dB. Fig. 3 shows that, under ideal conditions (i.e.,
perfect knowledge of the channel impulse response and of the au-
tocorrelation matrix Rrr), the CMMOE and the MMOE equaliz-
ers (referred to as “CMMOE EXACT” and “MMOE EXACT”) ex-
hibit comparable performances, with the “MMOE EXACT” equal-
izer slightly outperforming the “CMMOE EXACT”. To consider
a more realistic scenario, in the same figure we report the perfor-
mances of the CMMOE and MMOE receivers, when the autocor-
relation matrix Rrr is estimated from K = 400 OFDM symbols
(referred to as “DMI”) with channel known. To reduce the effects
of estimation error in R̂rr, we consider also the subspace-based im-
plementation [8] of the CMMOE and MMOE equalizers (referred
to as “SUB”). Results of Fig. 3 show that both the “CMMOE DMI
(channel known)” and “CMMOE SUB (channel known)” equalizers
significantly outperform their corresponding MMOE counterparts.
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Fig. 4. Channel MSE versus SNR.

By virtue of this fact, in the same plot, we present only the per-
formances of the “CMMOE DMI” and “CMMOE SUB” equalizers,
with LS channel estimation performed at the output of the first stage
as in [7] (referred to as “algorithm 1”) and, according to (11), at the
output of the second stage (referred to as “algorithm 2”). Results of
Fig. 3 show that the performances of both the finite-sample CMMOE
equalizers are unacceptable when the channel is estimated by algo-
rithm 1, whereas the same equalizers, with channel estimated by al-
gorithm 2, perform satisfactorily, exhibiting only a moderate penalty
with respect to their ideal counterparts “CMMOE DMI (channel
known)” and “CMMOE SUB (channel known)”. Finally, in Fig. 4,
we report the channel MSE as a function of the SNR, for SIR= 0
dB and SIR= 5 dB. The proposed LS channel estimation method
[see (11)] significantly outperforms the approach of [7], exhibiting a
slight sensibility to the SIR values.
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