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Abstract— A new SOS-expressed blind channel shortening
algorithm is proposed. It is based on a necessary and sufficient
condition that guarantees detection of all possible shortening
equalizers before the best one is selected. The unique existing
SOS-based blind channel shortening algorithm meets the same
objective but has a much higher complexity.

I. INTRODUCTION

The cyclic prefix is a mean to avoid intersymbol interference
(ISI) at the price of lowering the spectral efficiency of the
OFDM system. This is especially relevant for wireless broad-
band communication where large propagation delays imply
long cyclic prefixes. This has justified a renewed interest in
channel shortening. First proposed to reduce the complexity of
the Viterbi algorithm [1], channel shortening aims at devising
a linear equalizer so that the combined channel-equalizer
impulse response is shorter than the initial channel response.

Blind channel shortening techniques are attractive compared
to supervised ones [2], [3] that require training sequences.
Early blind algorithms were based on the minimization of non-
quadratic cost functions of the channel output high order statis-
tics (HOS) [4], [5] and suffer from slow and ill convergence.
Blind channel shortening from the second order statistics
(SOS) is made possible when multiple receive antenna are
used and/or the channel output is sampled at a rate higher than
the Baud rate. The channel phase information, then, appears
in the channel SOS which, then, become self-sufficient to
conduct channel processing tasks. Not only do SOS-based
techniques guarantee global and fast convergence, but they
also reach perfect shortening by means of FIR equalizers
when HOS-based techniques require IIR equalizers [6]. Up to
our knowledge, only one SOS-based blind channel shortening
algorithm [7] has been proposed to date. The objective of this
paper is to propose a new blind technique that has a lower
complexity and reaches the same asymptotic performance.

Notations
�

, � , � and � stand for transpose, transconjugate,
conjugate and the Moore pseudo-inverse, respectively. � � � � is
the � 	 
 zero matrix. � � is the � 	 � identity matrix. � � is the� 	 � permutation matrix with 
 s on its anti-diagonal and zeros

elsewhere. � � � � �� � � �� � � � � � is the � 	 � (down) shifting

matrix. We denote � � �� � � �� � � � � � �
. Dimensions are dropped

when they can be inferred from the context. � � � denotes the
Euclidean norm. � �  is the Kronecker product between
matrices � and  defined such that its ! " # $ % block is � & � '  .
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Fig. 1. Equalized SIMO channel.

II. NOTATION AND PREVIOUS RESULTS

A multiple antenna system and/or a fractional receiver
is often modeled as a single-input multiple-output (SIMO)
system. As depicted in Fig. 1, symbols ( ! ) % are simultaneously
inputed to a set of the ; sub-channels. The < -th tap of the = -
order SIMO channel is defined as > ? � � �� @ + �? # + A ? # B B B # + -? C � ,
where D + EF # B B B # + EG H � represents the impulse response associ-
ated with the I -th sub-channel. The SIMO channel order = is
the largest among the orders of the I sub-channels. The SIMO
channel impulse response is defined as > � � �� @ > �F B B B > � G C � .
The noise-corrupted input-output relationship is expressed byJ ! ) % � � �� K 1 , � . ! ) % B B B 1 , - . ! ) % L �� M N G O � ! ) % P Q ! ) % #
where M � � �� D > F B B B > G H

and N R ! ) % � � �� D ( ! ) % B B B ( ! ) S T P 
 % H �
for any T . Successive outputs are stacked into the vectorJ �U ! ) % � � �� @ J � ! ) % B B B J � ! ) S V P 
 % C � . We haveJ U ! ) % � M U N U O G ! ) % P Q U ! ) % #
where M U � � �� WX M � B B B �

. . .� B B B � M
YZ

is the ; V 	 ! V P = % channel filtering matrix, Q U ! ) % is defined
similarly as J U ! ) % and � is the ; -dimensional zero vector. The
matrix M U is full column rank if [8]1V [ = � (1)

1A non-common zero condition is also necessary but is not mentioned here
because it is almost always fulfilled by channels encountered in practice [8].
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The channel SOS are expressed by the correlation matrices
� � � �� � � �� � � 	 � 
 � � � � 
 	 �� 
 � � 
 �� �� � � � � � � � � � � �

...
. . .

...� � � � � � � � � � �
��

� � �� � � � �� � � � �� � � �� � � �� � � � �  (2)

where
� ! � � �� � � 	 
 " � � 
 	 � 
 " 
 � . In particular, we denote� � � � �� � � # �� . Eqn. (2) is valid if the symbols are independent

and identically distributed (i.i.d.) and uncorrelated from the
white noise components. This condition is assumed throughout
the paper. We also assume the transmitted symbols and the
noise samples to be zero-mean and denote by � �� and � ��
their respective powers. These assumptions are common to all
existing SOS/HOS based blind channel shortening techniques.

Similar notations are used for the equalizer, depicted in
Fig. 1 : 	 ! � � �� � $ �!  $ �!  � � �  $ �! � % denotes the � -th equalizer

tap and 	 � � �� & 	 #  � � �  	 � � � ' % the impulse response of the
 ( ) * 
 -order SIMO equalizer. The equalizer 	 is a shortening
equalizer with delay 
 and leading to an � -long combined
channel-equalizer impulse response iff

	 % � � � � + � , � 
 % + � , � � � � � � � � (3)

for some � -dimensional row vector 
 that stands for the
effective combined channel-equalizer impulse response.

The SOS-based blind channel shortening algorithm in [7]
is a straightforward extension of a blind channel equalization
method [9]. The shortening equalizers are given by the vectors
left orthogonal to [7, (26)]- � � � � � �� ) � �� � � � � �� � � � �� � � � � � ) � �� � � . �  (4)

where
� � is the left kernel of

� � � �� ) � �� � � �� � � � � .

III. AN ORIGINAL ALGORITHM FOR BLIND CHANNEL

SHORTENING

We denote � � and
� � by � and

�
, respectively. We

partition the channel filtering matrix as follows� � � � � � � � � � � � � � � � � �  
where � � � � � , � � � � and � � � � � are made of the first 
 ,
intermediate � , and last / � ( ) � ) 
 columns of � ,
respectively. In particular, we have� � � � � �� 0 � � � � 0 � � � � �

...
. . .

...0 � � � � � � � � 0 � � � � �

��  
where we use the convention 0 1 � + if 2 � / or 2 � 3 .
The sufficient and necessary condition (3) is equivalent to have

	 % � � � � � � � � � � � � � + 4 (5)

The set of 
 ( ) * 
 -order shortening equalizers leading to 
 -
delayed � -long combined channel-equalizer response form a

linear subspace given by the left kernel of � � � � � � � � � � � � �
. If

the equalization parameter ( satisfies (1), then � � � � � � � � � � � �
is full column rank and its left kernel has dimension� � � �� 
 5 ) * 
 ( ) / � � 4

We express the outer product of � � � � � � � � � � � � in terms of
the channel SOS. This opens the way for a blind procedure
that detects all channel shortening equalizers with the specified
delay and length. We write that (5) is equivalent to have

	 % 6 � � � � � � � � � � � � � � � � � � � � � � � � � � � 7 	 � � 3  
where � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � ) � � � � � � � � � � �

� *� �� � � ) � �� � � ) � � �� � � # �� 0 � � �
...0 � � � � � � �

�� �� 0 � � �
...0 � � � � � � �

�� � 4
Terms � 0 % � � � � � � 0 % � � � � � � � � % � 0 � � � � � � � 0 � � � � � � � � � are (possi-

bly zero-padded) sub-blocks of � 0 % � � � � 0 %# � % � 0 � � � � � 0 �# � ,
which is, up to a row and column permutation, the channel
response outer product 0 0 � . In [10], it was proved that

� �� 0 0 � � � ) � � % � � � � � � � � 
 � � � � � � � 
  
where � � � �� � � � � � � � ) � �� � � � 
 � � 
 � 4 (6)

and the Hankel-structured matrix
� �

is defined as [10, (3.10)]

� � � � �� �  �
� # ) � �� � � � � � � � �

� � � � +
...

...� � + � � � +
�

!!� 4
We, hence, have

� �� � 0 % � � � � 0 %# � % � 0 � � � � � 0 �# �� 
 8 � � � � � � 
 � � ) � � % � � � � � � � � 
 � � � � � � � 
 �9 
 8 � � � � � � 
� 
 8 � � � � � � 
 � 
 8 � � � � � � 
) 
 � � � � � � � 
 � � � % � � � � � � � (7)

where 
 8 � � � � � � 
 � 
 8 � � � � � � 
 is a row and column
permuted version of � ; and 
 � � � � � � � 
 � � � % � � � � � � � is
a shifted version of � . Let the 5 ( -square Hermitian matrix

: � � �� � ) � � �� � � # � �� �� 0 � � �
...0 � � � � � � �

�� �� 0 � � �
...0 � � � � � � �

�� �  (8)

where the terms in the sum above are sub-blocks of (7). All
possible shortening equalizers are given by the column span
of the

�
-dimensional kernel of : . We can also compute :

as

� ��
� � ��� � # , " " " , � � � , � � � , " " " , � � � � 0 %� � � � 0 %� � � � � � % � 0 �� � � � 0 �� � � � � �  
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but the sum above involves much more terms than in (8)
because, in practice, � is large and � is small. If we let the� � � �

matrix
�

be the kernel of � , then the iff condition
(5) is equivalent to write

� � � � � � (9)

where
�

is an arbitrary
�

-dimensional vector.
So far, a procedure is developed that detects all possible

shortening equalizers, including undesirable ones, those for
which � in (3) is arbitrarily small. These should be easily
avoided by applying the following selection criterion. The best
equalizer is chosen such that it maximizes the norm � � � of
the effective combined channel-equalizer response, under the
constraint that � � � in (9) remains constant [11], [7]. We write� � � � � � � 	 � � �� 
� ��

� � � 	 � � � � � �	 
 � � � � �
When

�
is obtained by EVD of � , we have

� � � � 
 .
The maximization above is, then, equivalent to choose

�
as

the conjugate of the eigen vector associated with the largest
eigenvalue of the

�
-square Hermitian positive definite matrix� � � �� � � � � � (10)

Because
�

is orthogonal to � , � is also equal (up to a
multiplication by � �� ) to

� �
��
� 
 � �� � � � �� � 
 � �

...� 
 � � � � � �
�� �� � 
 � �

...� 
 � � � � � �
�� � � �

� � � (11)

Both expressions (10) and (11) of � are equivalent in
the exact SOS case and may differ only slightly in practice,
as verified by simulations. Finally, the performance of the
shortened channel can differ significantly and unpredictably
depending on the pre-selected delay � and length � of the
shortened impulse response. Of course, the optimal (w.r.t. the
criterion above) set of parameters � and � can be obtained,
but the computational cost would, then, be prohibitive [2].

Prior to comparing the respective performances of the pro-
posed and existing algorithms (Sec. IV), we can compare them
from the complexity point-of-view. First, the noise power,
required to compute � , is obtained as a by-product of the
EVD of

� � � � . It is computed at no computational cost as
the average of the lowest  � � 
 !  " # 
 ! � " eigenvalues
of

� � � � . On the contrary, for the existing algorithm which
processes shifted correlation matrices only, a supplementary
EVD of

� � � � is required to estimate the noise power. Tab. I
illustrates the comparison from the complexity point-of-view
between the existing and proposed algorithms. For practical
systems for which the number of sub-channels is typically
low, the complexity of the existing algorithm is about four
times that of the proposed algorithm2.

2A less complex version of the existing algorithm is presented in [7]. We
do not consider this version because, as commented in [7], it leads to a biased
estimate even in the exact SOS case.

EVD/SVD of . . . Prop. alg. Exist. alg.� 	 
 � � $ 
 � � � % � $ 
 � � � %
A

� $ � 
 � � � � � � %
B

� $ � 
 � � � � � � % � $ � 
 � � � � � � %� � � �	 
 � � $ 
 � � � %� � � 
 � �	 
 � � $ 
 � � � %
(4)

� $ 
 � � � %
Total

� $ � � � 
 � � � � � 
 � � � � % � $ � � 
 � � � � � � 
 � � � � %
TABLE I

COMPLEXITY COMPARISON FOR � � � � � , � � � AND ! � .

IV. SIMULATIONS

A series of simulations is conducted to test the proposed
algorithm and compare it to the existing one. The coefficients& '( of the SIMO channel impulse response ( � � " and " �#
) are generated as normalized and centered i.i.d. complex-

valued Gaussian-distributed random variables. Unit-variance
QPSK symbols are generated. The channel SNR is defined as

$ % & � � �� � $ � �  ) ! � � %� $ � *  ) ! � � % � � ��� �	
� � � �� �

Unless otherwise stated, ' + + snapshots are generated for each
run, the SNR equals ' + dB, a shortening equalizer with � � 
 '
taps is computed, and the targeted shortened channel is such
that � � " and � � " .

In practice, the channel SOS are estimated from a limited
number, say

,
, of snapshots. As a consequence, strictly

speaking, � is not rank-deficient. We compute
�

as the set
of eigen vectors associated to the lowest

�
eigenvalues of � .

For the same reason, the combined channel-equalizer response
may not have the perfect shape of (3), so that we do have

� 	 � � � $ � 	� � � � � 	 � 	� � � � %
for some possibly weak but non-zero vectors � � � � � and � � � � � ,
respectively � and " # � � � � � dimensional. As a
performance measure of the shortening equalizers, we refer
to the shortening SNR (SSNR) [2], [4] which is the ratio of
the energy in the consecutive � coefficients to the energy in
the remaining coefficients, and is defined as follows

$ $ % & � � �� � � � �� � � � � � � � # � � � � � � � � �
For every run, the SSNR is measured and finally averaged over
the 
 + + + runs.

Results, plotted in Fig. 2 and Fig. 3, clearly show that
the two algorithms have roughly the same performance for
practical values of the sample size and the noise level. Under
uncomfortable observation conditions (low SNR and/or small
sample size), the proposed algorithm slightly outperforms the
existing one. Actually, Fig. 3 shows the proposed algorithm to
be particularly robust to the observation noise.
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W.r.t Fig. 4, the performance of the proposed algorithm
degrades as the desired length of shortened response increases,
and so, to the point of performing poorer than the existing
algorithm. In fact, when � increases, more terms appear in
the sum (8). These are sub-blocks of the same matrix and,
hence, error propagation takes place.
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Fig. 2. Effect of the number of snapshots
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Fig. 3. Effect of the noise level.

V. CONCLUSION

An orthogonalization property that stems directly from the
definition of a shortening equalizer is obtained then expressed
in terms of the channel SOS. A straightforward blind shorten-
ing technique is, hence, defined that contrasts with the much
more complex existing technique, the unique SOS-based one
proposed so far. Both techniques are guaranteed to reach
the optimal asymptotic performance, and, in practice, exhibit
comparable results.
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Fig. 4. Effect of the length
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of the shortened channel.
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