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ABSTRACT

The oversampled OFDM modulation is a possible alternative
to conventional OFDM for the transmission of signals over
multipath fading channels. Indeed with oversampled OFDM,
appropriate pulse-shaping can be introduced to fight against
time and frequency dispersion. In this paper, we propose a
theoretical and experimental analysis of the peak-to-average
power ratio (PAPR) of oversampled OFDM. Our analysis il-
lustrates the impact of the oversampling ratio and of the pulse
shape on the PAPR distribution.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) corre-
sponds to a multi-carrier modulation (MCM) scheme that is
now widely used for signal transmission over multipath fad-
ing channels. Indeed the decomposition of the OFDM sig-
nal over several narrow bands in frequency is an appropriate
technique to fight against the frequency selectivity that is in-
herent, for instance, to the mobile radio channel. However,
even if OFDM is now part of various transmission standards
and also a candidate for future ones [1], still many efforts are
necessary to get even more efficient modulation schemes. For
instance, conventional OFDM, that can be seen as a Gabor
system with a rectangular pulse shape, naturally leads to high
out-of-band energy radiations. To get a Gabor system with
a better pulse shape, we have to relax the maximum spectral
efficiency constraint. This key result in time-frequency analy-
sis is mathematically funded on the Balian-Low theorem [2].
The practical implication of Balian-Low theorem is that ei-
ther the symbol duration T0, or the frequency spacing F0, has
to be increased to get a pulse shape being well-localized in
the time-frequency plane. Naturally, increasing F0 reduces
the spectral efficiency, but then the advantage compared to
OFDM with an increased symbol duration due to the cyclic
prefix (CP-OFDM) is the possibility to obtain well-localized
pulses. We, then, get oversampled OFDM systems that may
be derived, as in [3], from a continuous-time pulse shape, or
can be directly designed in discrete-time [4–6].

Therefore, as any MCM, oversampled OFDM produces a
non-constant envelope signal, which may be a serious draw-
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back w.r.t. the power amplification. Indeed, signals with large
dynamic range may introduce various distortions [7]. Then,
the potential loss in power amplification can be measured by
the peak-to-average power ratio (PAPR). Until now, there are
only a few publications analyzing the impact of a given wave-
form on the PAPR. Reference [8] concerns the case of pulse
shaping for CP-OFDM; in [9], we propose an analysis de-
voted to another alternative of OFDM known as OFDM with
offset quadrature amplitude modulation (OFDM/OQAM), see
e.g. [2]. Our aim in this paper is to extend to oversampled
OFDM the PAPR analysis provided in [9] for OFDM/OQAM.

In section 2, we give a short description of the discrete-
time oversampled OFDM. Then, in section 3, we provide
an approximate expression of the complementary cumulative
density function (CCDF) for the PAPR. Finally, in section 4,
we introduce a measure to predict the CCDF evolution w.r.t.
the pulse shape and to the oversampling ratio.

2. SYSTEM DESCRIPTION

A discrete-time oversampled OFDM modulation with M car-
riers can be derived from a Gabor system satisfying the Balian-
Low requirement, i.e. the density d of time-frequency lattice
is less than 1 (d < 1

F0T0

). That means we have N samples
per symbol, with N > M , leading to an oversampling ratio
η = d−1 = N

M . Then, the baseband equivalent of the over-
sampled OFDM signal can be written as follows [4–6]:

s[k] =

M−1∑
m=0

∑
n∈Z

cm,nh[k − nN ]ej 2π

M
m(k−D/2), (1)

with k the time index, D = Lh − 1 with Lh the length of
the prototype filter h, i.e. the pulse shaping filter, and cm,n

the transmitted complex symbols. The orthogonality of the
family of discrete-time functions:

hm,n[k] = h[k − nN ]ej 2π

M
m(k−D/2) (2)

can be checked with the inner product:

〈f, g〉 =
∑
k∈Z

f [k]g∗[k]. (3)
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3. THE PAPR FOR THE OVERSAMPLED OFDM

The signal s[k] is obtained by the summation over M statis-
tically independent subcarriers, which results in a signal with
non-constant envelope. The PAPR measure is an appropriate
tool to quantify the impact of this phenomenon. In order to
allow a fair comparison with OFDM, the PAPR is defined, as
in [10], over only one symbol duration:

PAPR =
maxk∈{0,...,N−1} |s[k]|2

E {|s[k]|2}
, (4)

where E denotes the expectation. The PAPR is a random vari-
able and a convenient technique to analyze its behavior is to
compute its probability to exceed a given threshold, here de-
noted by γ. The CCDF gives this probability for every γ. So,
our aim is now to find an approximation of the CCDF for the
oversampled OFDM modulation. A similar computation has
been already proposed for OFDM in [11]. Note also that in
the rest of this paper, h is supposed to be a real-valued FIR
filter with a unit L2 norm.

3.1. Analysis of a sample s[k]

The PAPR behavior is in direct relation with the statistical
behavior of s[k]. Thus an important first point is to find the
analytical expression for the variance of the real and imagi-
nary parts of s[k]. Showing furthermore that they are equal.

Let σ2
R[k] = E {sR[k]sR[k]} be the variance of the k-th

sample of the real part signal s, denoted sR[k] with:

sR[k] =

M−1∑
m=0

∑
n∈Z

cR
m,nh[k − nN ] cos

(
2π

M
m(k −

D

2
)

)

−cI
m,nh[k − nN ] sin

(
2π

M
m(k −

D

2
)

)
, (5)

where cR
m,n (resp. cI

m,n) is the real (resp. imaginary) part
of cm,n. As cm,n is assumed to follow a zero-mean and a

σ2
c -variance process, cR

m,n and cI
m,n are zero-mean, with a σ2

c

2
variance and are uncorrelated. Then by noting:

Am,p,n,q,k =

E
{
cR
m,ncI

p,q

}
cos

(
2π
M m(k − D

2 )
)
sin

(
2π
M p(k − D

2 )
)

+ E
{
cI
m,ncR

p,q

}
cos

(
2π
M p(k − D

2 )
)
sin

(
2π
M m(k − D

2 )
)

,
(6)

we finally obtain:

σ2
R[k] =

σ2
c

2
M

∑
n∈Z

h[k − nN ]2

−
∑
m,p

∑
n,q

Am,p,n,q,kh[k − nN ]h[k − qN ].(7)

As the real and imaginary parts of cm,n are mutually uncorre-
lated, Am,p,n,q,k = 0 and:

σ2
R[k] =

σ2
c

2
M

∑
n∈Z

h[k − nN ]2. (8)

Similarly for the imaginary part of s, sI [k], we get:

σ2
I [k] = σ2

R[k]
∆
= σ2

k. (9)

In a second step, we prove that s[k] follows a complex gaussian
process. Indeed, at a given time index k, (1) shows that s[k]
is obtained by the summation over the M carriers of:

xm =
∑
n∈Z

cm,nh[k − nN ]ej 2π

M
m(k− D

2
). (10)

As cm,n are assumed to be uncorrelated, xm are then uncor-
related too. In addition, it is easy to show that:

E {xm} = 0, (11)

σ2
x = E {xmx∗

m} = σ2
c

∑
n∈Z

h[k − nN ]2. (12)

So, the mean and variance of xm are both independent of m.
Therefore, if we set XM =

∑M−1
m=0 xm = s[k], it is clear that,

for M large enough, based on the central limit theorem, XM

follows a complex gaussian process with a zero-mean and a
variance given by σ2 = Mσ2

c

∑
n∈Z h[k − nN ]2 = 2σ2

k.
Thus sR and sI are jointly gaussian, as it can also be proved
that they are uncorrelated, sR and sI are independent.

3.2. Approximation of the CCDF

Then, according to (9), we can also say that |s[k]| follows a
Rayleigh process and that |s[k]|

2 follows a χ2 process with
2 degrees of freedom. Let X = |s[k]|

2, then the probability
density function (pdf) of X is:

pX(x) =
1

2σ2
k

e
− x

2σ2

k . (13)

Let Y = |s0[k]|2 = |s[k]|2

E{|s[k]|2} = X
E{|s[k]|2} . As h has a unit

energy, it can be shown [5] that E
{
|s[k]|2

}
= M

N σ2
c . By

denoting αk as follows:

αk =
M

2N

σ2
c

σ2
k

=
1

N
∑

n∈Z h[k − nN ]2
, (14)

we can express the pdf of Y by:

pY (y) =
M

N
σ2

cpX

(
M

N
σ2

cy

)
= αke−αky. (15)

Then, for a given threshold γ, we have:

Pr(|s0[k]|2 ≤ γ) =

∫ γ

−∞

pY (y)dy = 1 − e−αkγ . (16)
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Note that, as αk+pN = αk, we only need the N first terms.
We also assume that the |s0[k]|2 samples are independant, so
the CCDF is such that:

Pr(PAPR ≤ γ) = Pr

(
N−1⋂
i=0

(|s0[i]|
2 ≤ γ)

)

=

N−1∏
i=0

Pr
(
(|s0[i]|

2
≤ γ)

)
=

N−1∏
i=0

(
1 − e−αiγ

)
. (17)

Finally, taking the complementary function, we find the fol-
lowing expression of the CCDF of the PAPR:

Pr(PAPR ≥ γ) ≈ 1 −

N−1∏
i=0

(
1 − e−αiγ

)
. (18)

To illustrate the validity of our approximation, Fig. 1 shows
the simulated CCDF and its approximation for η = 3/2 and
different values of M . These results have been obtained with
a prototype of length 6M obtained by the truncation and dis-
cretization of a Square Root of Raised Cosine (SRRC) func-
tion. The roll-off, r, of this SRRC prototype limits its fre-
quency band in the range |ν| ≤ (1 + r)F0

2 . As in [3], in order
to fit with the time-frequency lattice of density d = η−1, we
set r = η − 1. It can be seen that, as expected from the cen-
tral limit theorem, the quality of our approximation increases
with M for a given η. That also a posteriori illustrates the
usefulness of the independance assumption for the η values
of practical interest (η ≤ 3/2).

3.3. Influence of pulse shaping on the CCDF

In [11], it was shown that for OFDM the CCDF approxima-
tion only depends on the PAPR threshold γ. The result re-
ported in (18) indicates that the situation is different for over-
sampled OFDM with a CCDF that also depends on a set of
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Fig. 1. Influence of the number of subcarriers M on the va-
lidity of the approximation (η = 3/2).

variables {α0, . . . , αN−1}, where each αk parameter is di-
rectly related to the prototype filter h (14) and also depends,
for a given M , on the oversampling ratio. In this section, we
assume that this ratio η = N/M is fixed. The problem now is
to find a prototype filter providing the minimum probability
for the CCDF given in (18).

3.3.1. Some basic features

As the prototype filter h is of unit energy, it can be easily
shown that:

N−1∑
k=0

∑
n∈Z

h[k − nN ]2 = 1. (19)

Consequently, according to (14), we have:

N−1∑
k=0

1

αk
= N. (20)

Let u[k] =
∑

k h[k − nN ]2 with k = 0, . . . , N − 1, it is
obvious that we have: u[k] ≤

∑N−1
k=0 u[k] = 1. Then, our

previous definition of αk now writes as αk = 1
Nu[k] . Conse-

quently, the αk’s are lower bounded as follows:

αk ≥
1

N
. (21)

3.3.2. Optimization of the CCDF

A prototype filter h that minimizes the CCDF given in (18)
under constraint (20) has to be characterized by N parameters
that solve the following minimization problem:

min
αi

(
1 −

N−1∏
i=0

(
1 − e−αiγ

))
st.

N−1∑
i=0

1

αi
= N. (22)

This problem has already been tackled and solved in [9] for
the OFDM/OQAM case. We have in this context the same
optimization problem except that we have to determine N pa-
rameters, instead of M in [9]. We obtain that the necessary
and sufficient optimality conditions for (22) are: ∀i, αi = 1,
under the condition: γ ≤ u0N

1. Thus, the optimal CCDF for
a given η is:

Propt(PAPR ≥ γ) = 1 −
(
1 − e−γ

)N
. (23)

We can then state the following theorem:
Theorem- Assuming that the cm,n’s are i.i.d., for PAPR

thresholds in the range γ =]0, u0N ], we can reach the opti-
mal CCDF iff, for a given η = N/M , the prototype filter h
satisfies:

∀k ∈ {0, . . . , N − 1} ,
∑
n∈Z

h[k − nN ]2 =
1

N
. (24)

1u0 = 2+LW
�
−2e−2 �

≈ 1.59, LW , the Lambert function, being an
implicit function defined by: LW (x)eLW (x) = x.
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For a M carrier OFDM system the CCDF is approximated by
1 − (1 − e−γ)

M [11]. As for oversampled OFDM, we have
M < N , the corresponding optimal CCDF is necessarily over
the OFDM one for a given number of carriers.

4. A MEASURE OF CCDF QUALITY

Based on the optimality condition (24), we define a parameter
εN such that:

εN = max
k∈{0,...,N−1}

∣∣∣∣∣N
∑
n∈Z

h[k − nN ]2 − 1

∣∣∣∣∣ . (25)

For a given prototype h, εN corresponds to a measure of dis-
tance to CCDF optimality, i.e. if for a given η = N/M ,
εN = 0 then h has an optimal CCDF. We have computed
εN for different types of prototypes: the SRRC filters com-
puted as indicated in section 3.2 and the perfectly orthogonal
filters given in [6]. In this latter case, the prototype length
is such that given two integer parameters N0, M0 satisfying
M0N = MN0 = lcm(M, N) we have Lh = mN0M with
m an integer. The εN values, together with the CCDF curves
derived from (18), are presented in Fig. 2 for M = 1024.
We can note the following points concerning the CCDF of
the oversampled OFDM:

• As already mentioned, in this case the optimal CCDF
is necessarily over the one of OFDM, the difference de-
creases with η;

• For the SRRC prototype, the CCDF is practically inde-
pendent of Lh. For a given η (here 3/2 or 5/4), this pro-
totype provides the best CCDF but the resulting MCM
system is not perfectly orthogonal ;

• Differently from what has been noted for OFDM/OQAM
[9], orthogonality does not imply here CCDF optimal-
ity, a result which can be also deduced from an analysis
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Fig. 2. Impact of different prototype filters and oversampling
ratios on εN and on the CCDF curves.

of (24) and [6, (23)]. Furthermore the results also de-
pend on the optimization criterion of the prototype. Be-
ing approximately at 1.5 dB of the optimal distribution
for η = 3/2, the time-frequency localization (Loc.) cri-
terion leads to the worst result. For the energy criterion,
it can be noted that, as shown for η = 3/2, increasing
Lh yields a better CCDF.

5. CONCLUSION

Our analysis of the PAPR for oversampled OFDM has led to
an approximate expression of its CCDF. We have also pro-
vided the necessary and sufficient conditions that prototype
filters have to satisfy to provide an optimal CCDF for a given
oversampling ratio. In the present case, differently from OFDM
and OFDM/OQAM, orthogonality of the prototype does not
imply optimality of the CCDF. Therefore an extension of the
design method in [6] has to be derived to get orthogonal pro-
totypes satisfying the CCDF constraints.
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