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ABSTRACT

The oversampled OFDM modulation is a possible alternative
to conventional OFDM for the transmission of signals over
multipath fading channels. Indeed with oversampled OFDM,
appropriate pulse-shaping can be introduced to fight against
time and frequency dispersion. In this paper, we propose a
theoretical and experimental analysis of the peak-to-average
power ratio (PAPR) of oversampled OFDM. Our analysis il-
lustrates the impact of the oversampling ratio and of the pulse
shape on the PAPR distribution.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) corre-
sponds to a multi-carrier modulation (MCM) scheme that is
now widely used for signal transmission over multipath fad-
ing channels. Indeed the decomposition of the OFDM sig-
nal over several narrow bands in frequency is an appropriate
technique to fight against the frequency selectivity that is in-
herent, for instance, to the mobile radio channel. However,
even if OFDM is now part of various transmission standards
and also a candidate for future ones [1], still many efforts are
necessary to get even more efficient modulation schemes. For
instance, conventional OFDM, that can be seen as a Gabor
system with a rectangular pulse shape, naturally leads to high
out-of-band energy radiations. To get a Gabor system with
a better pulse shape, we have to relax the maximum spectral
efficiency constraint. This key result in time-frequency analy-
sis is mathematically funded on the Balian-Low theorem [2].
The practical implication of Balian-Low theorem is that ei-
ther the symbol duration 7T, or the frequency spacing Fp, has
to be increased to get a pulse shape being well-localized in
the time-frequency plane. Naturally, increasing Fp reduces
the spectral efficiency, but then the advantage compared to
OFDM with an increased symbol duration due to the cyclic
prefix (CP-OFDM) is the possibility to obtain well-localized
pulses. We, then, get oversampled OFDM systems that may
be derived, as in [3], from a continuous-time pulse shape, or
can be directly designed in discrete-time [4—6].

Therefore, as any MCM, oversampled OFDM produces a
non-constant envelope signal, which may be a serious draw-
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back w.r.t. the power amplification. Indeed, signals with large
dynamic range may introduce various distortions [7]. Then,
the potential loss in power amplification can be measured by
the peak-to-average power ratio (PAPR). Until now, there are
only a few publications analyzing the impact of a given wave-
form on the PAPR. Reference [8] concerns the case of pulse
shaping for CP-OFDM; in [9], we propose an analysis de-
voted to another alternative of OFDM known as OFDM with
offset quadrature amplitude modulation (OFDM/OQAM), see
e.g. [2]. Our aim in this paper is to extend to oversampled
OFDM the PAPR analysis provided in [9] for OFDM/OQAM.

In section 2, we give a short description of the discrete-
time oversampled OFDM. Then, in section 3, we provide
an approximate expression of the complementary cumulative
density function (CCDF) for the PAPR. Finally, in section 4,
we introduce a measure to predict the CCDF evolution w.r.t.
the pulse shape and to the oversampling ratio.

2. SYSTEM DESCRIPTION

A discrete-time oversampled OFDM modulation with M car-
riers can be derived from a Gabor system satisfying the Balian-
Low requirement, i.e. the density d of time-frequency lattice
is less than 1 (d < ﬁ). That means we have N samples
per symbol, with N > M, leading to an oversampling ratio
n=d'!= % Then, the baseband equivalent of the over-
sampled OFDM signal can be written as follows [4-6]:

M—-1
k] = 37 3" emnhlk —nNJe/ R0 )
m=0neZ

with k the time index, D = Lj — 1 with L the length of
the prototype filter h, i.e. the pulse shaping filter, and ¢,
the transmitted complex symbols. The orthogonality of the
family of discrete-time functions:

hm,n[k] = h[k — nN]ejfT}rm(k*D/?) (2)

can be checked with the inner product:

(f.9) =" flklg*[K]. 3)

keZ
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3. THE PAPR FOR THE OVERSAMPLED OFDM

The signal s[k] is obtained by the summation over M statis-
tically independent subcarriers, which results in a signal with
non-constant envelope. The PAPR measure is an appropriate
tool to quantify the impact of this phenomenon. In order to
allow a fair comparison with OFDM, the PAPR is defined, as
in [10], over only one symbol duration:

PAPR =

BOsBEr
where E denotes the expectation. The PAPR is a random vari-
able and a convenient technique to analyze its behavior is to
compute its probability to exceed a given threshold, here de-
noted by ~y. The CCDF gives this probability for every ~y. So,
our aim is now to find an approximation of the CCDF for the
oversampled OFDM modulation. A similar computation has
been already proposed for OFDM in [11]. Note also that in
the rest of this paper, h is supposed to be a real-valued FIR
filter with a unit £ norm.

3.1. Analysis of a sample s[k]

The PAPR behavior is in direct relation with the statistical
behavior of s[k]. Thus an important first point is to find the
analytical expression for the variance of the real and imagi-
nary parts of s[k]. Showing furthermore that they are equal.

Let 0% [k] = E{sgr[k]sr[k]} be the variance of the k-th
sample of the real part signal s, denoted s g [k] with:

M-1 o D
srlk] = E g cﬁynh[k — nNN] cos <Mm(k — 5))
m=0 neZ
27 D
— I — 3] - —_—
Co.nhlk — nN]sin (Mm(k 5 )) , (5

where cffm (resp. cfn’n) is the real (resp. imaginary) part
of ¢py,n. AS ¢y, is assumed to follow a zero-mean and a

2
2_yari R I : o
o -variance process, ¢, ,, and c;,, ,, are zero-mean, with a =

variance and are uncorrelated. Then by noting:

Amﬁpqu,k

E{CR ol }cos (%m(kfg)) sin (%p(kf %)

~—

m,nCp,q 2
+E {c,l,wc;fq} cos (Qﬁp(k: — %)) sin (%—}Tm(k — %)) ,
(6)
we finally obtain:
200 = ZENS T Ak — n)?
ohK = ZeM YAk nn]
ne”L
=33 A pmgrhlk — nNIh[k — gN](7)
m,p m,q

As the real and imaginary parts of ¢, ,, are mutually uncorre-
lated, Ay, p.n,q,k = 0 and:
o2

oplk] = MY hlk —nNJ>. (8)

2
nez

Similarly for the imaginary part of s, s;[k], we get:

A
o?lk] = o%[k] = oF. 9)
In a second step, we prove that s[k] follows a complex gaussian
process. Indeed, at a given time index k, (1) shows that s[k]
is obtained by the summation over the M carriers of:

Tm =Y Cmnhlk —nN]ed ¥ mE=2), (10)
nez

As ¢y, are assumed to be uncorrelated, x,,, are then uncor-
related too. In addition, it is easy to show that:

E{z,} = 0, 11
02 =E{z,z}} = Uth[k—nN]? (12)

nez

So, the mean and variance of x,, are both independent of m.
Therefore, if we set X = Z%;(} T = slk], it is clear that,
for M large enough, based on the central limit theorem, X 5,
follows a complex gaussian process with a zero-mean and a
variance given by 0 = Mo2Y" ., hlk — nN]* = 20},
Thus sr and s; are jointly gaussian, as it can also be proved
that they are uncorrelated, s and s; are independent.

3.2. Approximation of the CCDF

Then, according to (9), we can also say that |s[k]| follows a
Rayleigh process and that |s[k]| follows a x process with
2 degrees of freedom. Let X = |s[k]|?, then the probability
density function (pdf) of X is:

1 3%
px(x) = —5e *%k. (13)
20,%
[s[k][? X

2 .
Let Y = |solk]|” = BT = By As b has a unit

energy, it can be shown [5] that E {|s[k]|?} = o2 By
denoting o, as follows:

M o2 1
=—-< = 14
=N T Ny hkaNE 0P
we can express the pdf of Y by:
M, M, —aky
e —_ = o . 1
Py (y) N OePX ( ~ acy> age (15)
Then, for a given threshold ~, we have:
¥
Pr(lsoftl* <9 = [ pridy=1-c . a6
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Note that, as ay4+pn = o, we only need the IV first terms.

We also assume that the |sq[£]|> samples are independant, so
the CCDF is such that:

Pr(PAPR < v)

N-1
P ( M (ol < w)
N— N— =

H ( (Iso[7] S’Y)) = H

Finally, taking the complementary function, we find the fol-
lowing expression of the CCDF of the PAPR:

e~ ). (17)

N-—1
Pr(PAPR> )~ 1— H (L—e ™). (18)
1=0

To illustrate the validity of our approximation, Fig. 1 shows
the simulated CCDF and its approximation for n = 3/2 and
different values of M. These results have been obtained with
a prototype of length 6 M obtained by the truncation and dis-
cretization of a Square Root of Raised Cosine (SRRC) func-
tion. The roll-off, r, of this SRRC prototype limits its fre-
quency band in the range |v| < (1+r)£2. Asin [3], in order
to fit with the time-frequency lattice of density d = n~!, we
set 7 = 1 — 1. It can be seen that, as expected from the cen-
tral limit theorem, the quality of our approximation increases
with M for a given n. That also a posteriori illustrates the
usefulness of the independance assumption for the 7 values
of practical interest (n < 3/2).

3.3. Influence of pulse shaping on the CCDF

In [11], it was shown that for OFDM the CCDF approxima-
tion only depends on the PAPR threshold v. The result re-
ported in (18) indicates that the situation is different for over-
sampled OFDM with a CCDF that also depends on a set of

M=16 (simulation)
M=16 (approximation)
107 F | —%— M=64 (simulation)
—*k— M=64 (approximation)
—©— M=256 (simulation)
—S— M=256 (approximation)

Pr(PAPR>y)

Fig. 1. Influence of the number of subcarriers M on the va-
lidity of the approximation (n = 3/2).

variables {av,...,an_1}, where each «y, parameter is di-
rectly related to the prototype filter h (14) and also depends,
for a given M, on the oversampling ratio. In this section, we
assume that this ratio n = N/M is fixed. The problem now is
to find a prototype filter providing the minimum probability
for the CCDF given in (18).

3.3.1. Some basic features

As the prototype filter h is of unit energy, it can be easily

shown that:
N-1
> ) hlk—nNJ? = (19)
k=0 n€Z
Consequently, according to (14), we have:
N-1
Z — =N (20)
k=0 Y
Let ulk] = >, hlk — nN]*> with k = 0,...,N — 1, it is
obvious that we have: u[k] < Zk 0 "u[k] = 1. Then, our
previous definition of o now writes as o, = Ni[k] . Conse-
quently, the ai,’s are lower bounded as follows:
1
B2 (21

3.3.2. Optimization of the CCDF

A prototype filter h that minimizes the CCDF given in (18)
under constraint (20) has to be characterized by N parameters
that solve the following minimization problem:

N-1 N-1
min | 1 — 1—e 7)) | st —=N. (22
8 () R

This problem has already been tackled and solved in [9] for
the OFDM/OQAM case. We have in this context the same
optimization problem except that we have to determine [V pa-
rameters, instead of M in [9]. We obtain that the necessary
and sufficient optimality conditions for (22) are: Vi, a; = 1,
under the condition: v < ugN'. Thus, the optimal CCDF for
a given 7 is:

Pr"(PAPR>y)=1— (1—e )" (23)

We can then state the following theorem:

Theorem- Assuming that the c,, ,’s are i.i.d., for PAPR
thresholds in the range v =|0, uoN], we can reach the opti-
mal CCDF iff, for a given n = N/M, the prototype filter h
satisfies:

1
2
Vke {0,...,N 1},Zh[k nN|? = g (24)

nez

Yug = 2+ LW (—2e~2) ~ 1.59, LW, the Lambert function, being an
implicit function defined by: LW (z)eXW () = ¢
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For a M carrier OFDM system the CCDF is approximated by
1-(1- 6_7)M [11]. As for oversampled OFDM, we have
M < N, the corresponding optimal CCDF is necessarily over
the OFDM one for a given number of carriers.

4. A MEASURE OF CCDF QUALITY

Based on the optimality condition (24), we define a parameter
€N such that:

(25

EN = max
ke{0,...,N—1}

N hlk—nNP—1].
nez

For a given prototype h, €y corresponds to a measure of dis-
tance to CCDF optimality, i.e. if for a given n = N/M,
ey = 0 then h has an optimal CCDF. We have computed
en for different types of prototypes: the SRRC filters com-
puted as indicated in section 3.2 and the perfectly orthogonal
filters given in [6]. In this latter case, the prototype length
is such that given two integer parameters Ny, M satisfying
MoN = MNy = lem(M, N) we have L, = mNyM with
m an integer. The e values, together with the CCDF curves
derived from (18), are presented in Fig. 2 for M = 1024.
We can note the following points concerning the CCDF of
the oversampled OFDM:

e As already mentioned, in this case the optimal CCDF
is necessarily over the one of OFDM, the difference de-
creases with 7;

e For the SRRC prototype, the CCDF is practically inde-
pendent of Ly,. For a given n (here 3/2 or 5/4), this pro-
totype provides the best CCDF but the resulting MCM
system is not perfectly orthogonal ;

o Differently from what has been noted for OFDM/OQAM
[9], orthogonality does not imply here CCDF optimal-
ity, a result which can be also deduced from an analysis

OFDM
——Optimal Distribution (n=1.25)
- - -Optimal Distribution (n=1.5)
——SRRC (1=1.25, £=0.16)
i o Loc. (1=1.25, L,=10M, £=0.53)
——Energy (n=1.25, Lh=10M, £=0.20)
-+-SRRC (n=1.5, £=0.31)
-« -Loc. (1=1.5, L, =6M, £=0.72)
- -Energy (n=1.5, Lh:SM, £=0.41)
-+ -Loc. (1=15, L =12M, £=0.69)
= -Energy (n=1.5, Lh=12M, £=0.29)

T
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v

Pr(PAPR>Y)
>

Fig. 2. Impact of different prototype filters and oversampling
ratios on € and on the CCDF curves.

of (24) and [6, (23)]. Furthermore the results also de-
pend on the optimization criterion of the prototype. Be-
ing approximately at 1.5 dB of the optimal distribution
forn = 3/2, the time-frequency localization (Loc.) cri-
terion leads to the worst result. For the energy criterion,
it can be noted that, as shown for n = 3/2, increasing
Ly, yields a better CCDF.

5. CONCLUSION

Our analysis of the PAPR for oversampled OFDM has led to
an approximate expression of its CCDF. We have also pro-
vided the necessary and sufficient conditions that prototype
filters have to satisfy to provide an optimal CCDF for a given
oversampling ratio. In the present case, differently from OFDM
and OFDM/OQAM, orthogonality of the prototype does not
imply optimality of the CCDEF. Therefore an extension of the
design method in [6] has to be derived to get orthogonal pro-
totypes satisfying the CCDF constraints.
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