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ABSTRACT

In this paper, adaptive sectoring of a CDMA cellular network is in-
vestigated, and the aim is to maximize the uplink capacity by uti-
lizing mobiles’ spatial information. The distribution of mobiles is
modeled as a spatial Poisson process, whose rate function quantizes
mobiles’ concentration and which can be inferred with a Bayesian
estimator based on network traffic. The time dynamics of the rate
function is assumed to evolve according to mobiles’ mobility pattern
and which is formulated using the Influence model. With mobiles’
spatial distribution, the interference and thus the outage probability
of different sector partitions of a cell can be computed. The adaptive
sectoring problem is formulated as a shortest path problem, and the
optimal path corresponds to the sector partition with the minimum
outage probability.

1. INTRODUCTION

It is well known that CDMA systems are interference limited, and
sectoring has been an effective mean of increasing the network ca-
pacity by introducing spatial domain orthogonalization to the sys-
tem. The conventional method applied in, for example, GSM and
IS-95 employs 120◦ or 60◦ sectoring to achieve better reuse of net-
work resources. However, one major drawback of this scheme is its
inflexibility when dealing with non-stationary and non-uniform mo-
bile distribution. For example, hot spots can cause outage in a sector
while other sectors have light traffic.

In this paper, we extend the conventional sectorization by allow-
ing base stations to observe the network traffic and adaptively sec-
torize the cell accordingly. The dynamic sectorization is achieved by
the deployment of smart antenna system at the base station. While
smart antenna is often associated with adaptive beam forming, our
approach is fundamentally different. Even though both approaches
utilize the spatial domain, while beam forming directs dedicated
beam to each mobile, sectorization spans the cell with few main
beams with each beam corresponds to a sector.

Many papers, [1, 2, 3], have looked into this adaptive sectoring
problem. [1] deals with the problem when mobiles’ locations within
the network are known and stationary, such as the case in wireless
local loop. The adaptive sectoring is solved for two cases: mini-
mizing the total transmit power of the mobiles and minimizing the
total received power at the base station. [3] assumes a spatial Pois-
son process with the intensity function λ, which is assumed known,
and the probability of having k mobiles in an area A is given by

the Poisson distribution P (k, A) = (λA)k

k!
e−λA. By fixing k and

P =
∑∞

j=k
P (j, A), and replace A by r2θ

2
where r is the cell ra-

dius and θ is the sector’s angle span, P is the probability of having

more than k users in θ. Adaptive sectoring is computed by an iter-
ative method which reduces θ when k is above a certain threshold.
[2] continuously monitors the SINR (signal to interference and noise
ratio) of all the users, and sectorizes the cell to equalize the SINR in
all sectors. However, in each of the above solutions, there are certain
limitations. While the work in [1] is designed to work for wireless
local loop, it is difficult to extend it for constantly moving mobiles.
In [3], the success of the algorithm depends on the knowledge of
the mobile concentration. Moreover, the SINR-based sectoring in
[2] may be unstable because of the shadowing and fast fading in the
measurement of SINR [4].

The major difference between adaptive and conventional sector-
ing is the system’s responsiveness to changes in mobile distribution.
In [5], movement of people are observed to follow certain patterns.
However, mobility is not observable, it can only be indirectly ob-
served from the network traffic. In this paper, a mobility-enhanced
traffic model is developed to capture mobile distribution changes
over period of a day from the network traffic observed. Based on
the estimated mobile distribution, the sectoring problem is solved to
maximize the uplink capacity.

The paper is organized as follows. Sec. 2 formulates the adap-
tive sectoring problem and defines the related models. Sec. 3 devel-
ops the mobility model underlying the adaptive sectoring problem.
Sec. 4 presents the simulation results and Sec. 5 concludes the paper.

2. ADAPTIVE SECTORING PROBLEM FORMULATION

In this section, the aim is to formulate the adaptive sectoring as a
minimization problem of outage probability in CDMA uplink. In
order to compute the outage probability at a sector, the knowledge
of mobiles’ whereabouts is necessary. Yet, as the density of mobiles
increases, tracking individuals is too computationally intensive, and
may lead to frequent sectoring because of various individual move-
ment patterns. As a result, the algorithm developed concentrates on
the statistics of mobiles instead. The network is modeled as a hexag-
onal cellular network, with each cell consists of six equally spaced
areas called subareas, and statistics of mobiles is collected with re-
spect to each subarea in order to infer the concentration of mobiles.
Mobiles are assumed to be distributed as a spatial Poisson process,
and its rate function is uniform in each subarea; in this section, the
rate function is assumed known, the estimation problem is discussed
in the next section. Each base station collects statistics in its subar-
eas, and shares it among its neighboring base stations. The sharing
of mobiles’ spatial information allows, as demonstrated later, the
computation of the outage probability.

From the above discussion, the sectoring considered in this pa-
per is discrete sectoring in terms of subareas. Specifically, each sec-
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Fig. 1. The Graph-theoretic representation of a hexagonal cell where
the cell is divided into six equally spaced areas called subareas. The
graph on the left is the ring representation of a cell, where each node
is a subarea. (Sectors are disjoint subsets of nodes.) The graph on
the right is one of six reduced string representations, where the edge
e6 is arbitrarily chosen and removed.

tor in a cell is defined by the beam pattern of the base station’s sector-
beam, whose beamwidth is multiples of a subarea’s angular span. In
addition, perfect beam pattern is assumed; there is no overlap be-
tween beams and thus mutual interference is ignored. As a result,
given the mobile statistics in the subareas, the outage probability ex-
perienced at a sector can be computed and which will be used as the
cost weighting different sectoring decisions. Note that the dimen-
sion of the subarea defines the granularity of the model; the smaller
the subarea, the finer the tracking of the mobile distribution and also
the sectoring, but the higher the computational load on the system to
perform estimation.

2.1. Adaptive Sectoring As Graph Partitioning

A natural mathematical representation of the adaptive sectoring prob-
lem is graph partitioning. The key advantage of such representation
is that, under certain conditions, the graph partitioning problem has
a one-to-one correspondence to a shortest path problem, and which
is readily solvable using Dijkstra’s algorithm. (The method was first
applied in [1] to sectorize wireless local loops with stationary mo-
biles.) In this subsection, the graph partitioning formulation of the
adaptive sectoring problem is demonstrated.

Fig. 1 illustrates the graph theoretical representation of the cel-
lular network. A cell is modeled as a ring of nodes where each node
represents a subarea. Let the graph G = (V, E) denotes the ring
and the vector V = {v1, v2, . . . , v6} denotes the nodes, the sector-
ing problem is equivalent to the partitioning of nodes (subareas) into
subsets (sectors). Let π = {S1, . . . , SN} be a partition of the nodes,
where the subgraph induced by Si for i = 1, . . . , N is connected,
the cost function of the partition π is measured by the summation
of weights W (Si) for all i, where W (Si) is the outage probabil-
ity experienced in the corresponding sector of Si. Specifically, the
graph partitioning problem is to find a partition which minimize the
following cost

min
π

C(π) =

N∑
i=1

W (Si). (1)

In general, the problem of optimally partitioning an arbitrary
graph with an arbitrary cost function is NP-hard. However, it has
been shown that the partitioning problem can be solved in polyno-
mial time if the graph is a string and the cost function is separable.
The important observation of our ring of subareas is that it can be
broken into a string if an edge is removed. Given the string, the
partitioning problem can be mapped to an equivalent shortest path
problem [6]. Fig. 2 demonstrates the acyclic network constructed
corresponding to its partitioning problem counterpart in Fig. 1; the
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Fig. 2. Acyclic network generated from the string illustrated in Fig.
1.

weight of each edge in the acyclic network is calculated by W (Si).
Details of the construction can be found in [1]. It should be noted
that the removal of an edge traded problem complexity with compu-
tational complexity since six strings are generated from one ring.

The computation of W (Si), i.e., the outage probability, is based
on the evaluation of P (Ii + Io > α), where Ii and Io are in-cell
and other-cell interference respectively, and α is the maximum total
interference the system can handle. Because the mobiles are mod-
eled as a spatial Poisson process, and the rate functions of the pro-
cess in each subarea is assumed known, also assuming soft hand-
off, log-normal shadow loss and perfect power control, the in-cell
and other-cell interference can be computed by separating the spa-
tial Poisson process into two processes using the Marking theorem
and computing their corresponding signal power at the base station
of interest. The two processes are referred to as the in-cell mobiles
and the other-cell mobiles: the in-cell mobiles is the spatial Poisson
marked by the probability that the mobile is power controlled by the
base station of interest and the other-cell mobiles is marked by the
probability that the mobile is not power controlled by the base sta-
tion of interest. The calculation of outage probability with Poisson
field has been studied in many papers, and the result we adopted is
studied in [7]. The outage probability can be numerically evaluated
based on the following equation:

P (Ii + Io > α|Ii > 0) =
e−m

1 − e−m

∞∑
j=1

mj

j!
Q(ỹj) (2)

where ỹj ≡ (α−j+1−κ1)/
√

κ2, κ1 and κ2 are the mean and vari-
ance of the other-cell Poisson process respectively, m is the mean of
in-cell Poisson process and Q is the Q-function for the standard nor-
mal distribution.

3. MOBILITY MODEL

From the previous section, the adaptive sectoring problem is shown
to be equivalent to a shortest path problem and whose weight is a
function of a spatial Poisson process. In order to compute the op-
timal sectoring, estimation of the spatial Poisson’s rate function is
necessary. Once the weight of each edge in the acyclic network is
determined, Dijstra’s algorithm can be used to compute the optimal
sectoring. (Description of Dijstra’s algorithm is omitted since plenty
of literatures is available.) In this section, the justification of the
spatial Poisson process is described and a MAP estimator of its rate
function is developed.
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3.1. Mobility-Enhanced Traffic Model

In general, mobiles’ mobility pattern is not observable, and it can
only be indirectly observed through the network traffic processed at
the base station. The approach taken is inspired by [7] where the
mobile distribution is modeled as a spatial Poisson process and its
relation to the network traffic is demonstrated with the following
theorem.

THEOREM 1 Let Πt be a Poisson process of arriving calls at a base
station with constant rate of Xk from mobiles in an arbitrary subarea.
Once the mobiles placed the call, they move at random around the
subarea with independent trajectories. Let E be a spatial subset of
the subarea such that the probability of the mobile who called at time
s being in E at a subsequent time t is p(s, t). Then the number of
mobiles in E at time t has a Poisson distribution with mean

u(t) =

∫ t

0

Xk p(s, t)ds.

Assuming uniform distribution for p(s, t) over the subarea, the dis-
tribution of the mobiles in the subarea is a spatial Poisson process
with rate equals to that of the arriving calls.
PROOF The proof can be found in [8], (pg 49 Bartlett’s Theorem).

In Theorem 1, a number of assumptions are made, and it is
worthwhile to go into the details.

Assumption 1: The arrival process at the base station is a Poisson
process with constant rate. The arrival process referred to in the
Theorem is the connection requests made by mobiles in the subarea.
For example, the number of times Access Channel is requested in IS-
95 or CDMA2000. From the study of broadband network traffic [9],
the connection request is generally modeled as an inhomogeneous
Poisson process. The additional assumption on the constant rate is
justified by assuming the rate to be a slowly varying process which
has finite states and jumps on a hourly basis.

Assumption 2: The uniform probability distribution over the sub-
area. The assumption is made to simplify the discussion, and it
seems reasonable if the subarea is small enough such that highly
attractive locations such as shopping malls does not appear like a
clustered point in the subarea. However, other distributions may be
applied but they are not studied in this paper.

The advantages of relating the network traffic to a spatial Pois-
son process are 1) The time dynamics of the connection requests in
each subarea can be described by the mobiles’ mobility pattern. 2)
The rate function of the spatial Poisson process can be estimated in
real time from the statistics of connection requests.

Model Definition
Let i = 1, 2, . . . , M denotes subareas, where M is the number of
subareas in the network, and k = 0, 1, . . . , 23 denotes hours of a
day, Πi

k is the spatial Poisson process with constant rate Xi
k in sub-

area i during the time interval [k, k + 1). Xk = [X1
k , X2

k , . . . , XM
k ]

is a discrete time discrete state stochastic process, and, with Theorem
1, its state controls the rate of connection arrivals observed in each
subarea. If there is only one subarea, X1

k is a hidden Markov chain
observed through a Poisson process. For M subareas, the state of
Xi

k for all subarea i is modeled with the Influence model [10]. Sup-
pose the subarea of interest is i, let D(i) denotes the dependency of
i, the transition probability for Xi

k is

P (Xi
k+1|X1

k , . . . , XM
k ) =

∑
j∈D(i)

dijP (Xi
k+1|Xj

k), (3)

where D(i) refers to i itself and its adjacent subareas, and dij and
P (Xi

k+1|Xj
k) are model parameters which are assumed known. (Some

parameter estimation techniques can be found in [11, 12].) Further-
more, the initial probability distribution P (Xi

k=0) is also assumed
known for all i.

3.2. MAP Estimator of Spatial Poisson’s Rate Function

In this subsection, the maximum a posteriori estimator of Xi
k given

the connection requests statistics is introduced. (The derivation is
omitted.) Since the estimators for all subareas are equivalent, and
for notational convenience, the subarea to be estimated is labeled as
X1

k , and whose closest neighbors are labeled as X2
k , X3

k and X4
k .

Only 3 closest neighbors are considered because hexagonal cells of
six subareas are assumed.

Let Π1
k be a spatial Poisson process with rate X1

k at the subarea
1, and let {N1

k (σ); k ≤ σ < t} denotes the observed path of Π1
k

in the time interval [k, t), i.e., the connection requests processed at
the base station. The a posteriori probability mass function of X1

k ,
P (X1

k |N1
k (σ);k ≤ σ < t), is tracked as time t progresses based on

the following algorithm.
For t ∈ [k, k +1), define �N1

t = N1
k (t+�t)−N1

k(t), where
�t is an arbitrary time interval, the a posteriori probability mass
function evolves according to

P (X1
k |N1

k (σ); k ≤ σ < t + �t)
= P (X1

k |N1
k (σ); k ≤ σ < t){1+

(X1
k − X̄1

k)X̄1
k

−1
(�N1

t − X̄1
k�t)} + o(�t),

(4)

where X̄1
k =

∑
X1

k

X1
kP (X1

k |N1
k (σ);k ≤ σ < t). For �t small

enough, �N1
t is either 0 or 1 depending on occurrence or nonoc-

currence of events and o(�t) is negligible. At the end of the time
interval [k, k + 1), label n1 = {N1

k (σ);k ≤ σ < k + 1}, n2 =
{N2

k (σ); k ≤ σ < k+1}, . . . , and n4 = {N4
k (σ);k ≤ σ < k+1},

the probability mass function of the subarea 1 at the beginning of the
next time interval [k + 1, k + 2) is

P (X1
k+1 = x|n1, n2, n3, n4)

=
∑4

j=1
d1j

∑
X

j
k

P (X1
k+1 = x|Xj

k)P (Xj
k|nj),

(5)

where d1j and P (X1
k+1|Xj

k) are Influence model parameters. For
t ∈ [k + 1, k + 2), (4) again continuously update the a posteriori
probability upon receiving connection requests. As a result, assum-
ing the initial probability P (Xi

k=0) is known for all i, the a posteriori
probability of Xi

k can be tracked for any time t, and thus the MAP
estimator at time t is

argmax
x

P (X1
k = x|N1

k (σ), . . . , N4
k (σ);k ≤ σ < t) (6)

4. SIMULATION OF ADAPTIVE SECTORIZATION

The typical problem of nonuniform traffic is manifested in the gen-
eration of hot spots. In this section, the response of the adaptive
sectoring algorithm is studied against a hot spot scenario, where a
comparison in network capacity of the adaptive and the fixed sec-
toring is made. The network consists of 19 cells and each cell has
radius of one. The value of the path-loss exponent, γ, is assumed to
be 4, and the required SIR is set to 7 dB/128, which corresponds to a
despread SIR of 7 dB when the spreading factor is 128. Furthermore,
the shadowing component in the propagation uncertainty is taken to
have standard deviation of 8 dB.
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Fig. 3. Comparison of system performance with fixed and dynamic
sectoring under hot spot condition. It can be observed that dynamic
sectoring balances the traffic and keep the outage probabilities of the
three sectors under 1%, where the loaded sector in fixed sectoring
has approximately 9% outage probability.

Suppose the cell of interest is the central cell, the hot spot sce-
nario considered is to increase the rate function of its two neighbor-
ing cells, and determine how adaptive sectoring can mitigate the ef-
fect. Fig. 3 illustrates the difference in outage probabilities between
the fixed and the adaptive sectoring. In the fixed sectoring case, when
the rate function is gradually increased, the sector closest to the hot
spot experiences high outage probability while the other two sectors
have all the unutilized resources. On the other hand, the adaptive
sectoring algorithm narrows the loaded sector when its outage prob-
ability starts to rise, and share the load among the three sectors. It is
observed that even though the outage probabilities have risen in the
other two sectors, they are well below 1%; the outage probability in
the fixed sectoring case has soared to approximately 9%.

5. CONCLUSION

In this paper, the adaptive sectoring problem is formulated as a short-
est path problem. The weight matrix of the shortest path problem de-
pends on mobiles’ spatial distribution over the network, and which is
estimated by a MAP estimator based on the network traffic processed
at base stations. The real time tracking of the network traffic enables
the system to respond to non-stationary and non-uniform mobile dis-
tribution; the effect of mobile distribution is measured by the outage
probability it imposes on the system, and adaptive sectoring is im-
plemented to minimize it. The simulation of hot spot scenario has
demonstrated how adaptive sectoring cope with nonuniform traffic;
the load is balanced between sectors such that no sector has outage
probability exceeding 1%, while the fixed sectoring scheme experi-
ences outage of approximately 9%.
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