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ABSTRACT
This work addresses the problem of designing efficient re-
source allocation algorithms for wireless ad-hoc networks with
best-effort traffic. Relying on the framework of generalized
Lagrangeans and duality we propose an optimization con-
cept that combines the decentralization with quadratic quo-
tient convergence and unconstrained iteration character.

1. INTRODUCTION

Contemporary wireless ad-hoc networks (802.11,.15,.16) are
known to carry a hybrid mixture of traffic flows with differ-
ent priorities and requirements with respect to QoS (Quality
of Service) parameters, like delay or data-rate. The policy of
QoS provision for all flows in such multi-hop networks con-
sists of an end-to-end control mechanism (transport layer is-
sue) and node-by-node, or per-link, control policy
(MAC layer). The end-to-end policy includes the routing pol-
icy and the end-to-end congestion control mechanism con-
sisting in the dynamical adjustment of source rates according
to the states of the routes - e.g. by the transmission win-
dow control [1]. The node-by-node policy consists of the
link scheduling policy, nominating the links for concurrent
transmission, and the resource allocation algorithm, allocat-
ing transmit power and bandwidth to transmitting nodes ac-
cording to some objective. It is a known fact that a node-by-
node control is an important element contributing to an im-
proved dynamic behavior of the overall QoS provision policy
in terms of latency and stability.

In this work we focus on the power allocation algorithm
as a part of the node-by-node policy in networks carrying so-
called best-effort traffic [1], [2], [3]. We can classify a power
allocation algorithm as efficient, if it satisfies three key re-
quirements; fast quotient convergence, decentralized realiz-
ability and unconstrained iteration character (in the sense to
be described). Due to the specific splitting of optimization
variables and the use of interesting local properties of max-
min points and saddle points we succeed in constructing a
primal-dual algorithm satisfying all the above requirements.

2. SYSTEM MODEL AND PRELIMINARIES

We consider one hop of a multi-hop communication in an ad-
hoc network, under some given routing and link scheduling
policy. We denote by K := {1, . . . , K} the set of concur-
rently activated peer-to-peer links. We assume the network to
carry best-effort traffic only, which means that there are no
stringent QoS values (maximum delay, minimum data-rate)
to be ensured for each flow. Instead, the appropriate aim of
power allocation is the optimization of some weighted sum
of per-link QoS parameters [1], [2], [3], [4]. In wireless net-
works the value decisive for the link-QoS is the correspond-
ing signal-to-interference ratio (SIR), defined as SIRk(p) :=
pk/Jk(p), k ∈ K with pk as the transmit power of k-th trans-
mitter (source of link k), p = (p1, . . . , pK), and Jk : R

K
+ →

S ⊆ R+ as the interference function describing the interfer-
ence power at k-th receiver (destination of link k) as a func-
tion of p. Hence, we can write the power allocation problem
as

min
p

∑
k∈K

αkφ(
pk

Jk(p)
), subject to

{
−p ≤ 0
p − p̂ ≤ 0,

(1)

with φ : R+ → Q ⊆ R as some decreasing QoS func-
tion generating the SIR-dependent values of QoS parame-
ters, p̂ as the vector of per-link transmit power constraints
and α = (α1, . . . , αK) > 0 as the vector of priority factors
determined by the traffic types on the links. For instance, we
may take φ(SIR) = − log(1 + SIR) when the link data-rate
is the QoS parameter of interest, or φ(SIR) = 1/SIR, when
the interest is in the link reliability expressed by the average
bit-error-rate slope. In the remainder, we shall assume a fair
statement of the power allocation problem, i.e. the choice of
(α, φ) such that at the optimum of (1) each link k ∈ K is
allocated nonzero transmit power. Such slight restriction al-
lows us to use an almost always advantageous (see e.g. [4])
bijective variable transformation x := log p (p = exp(x)).
Defining Je

k(x) := Jk(exp(x)), the following condition will
be sometimes of interest in the remainder.
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Condition C1 For Je
k , k ∈ K there holds [∇2Je

k(x)]jl = 0,
j, l ∈ K, j �= l.
The condition characterizes the class of interference func-
tions which can be written as Je

k(x) =
∑

l∈K je
l (xl)+ const ,

je
l : R → Sl ⊆ R+, k, l ∈ K. Such class includes the most

common case of a linear receiver network, corresponding to

Je
k(x) =

∑
l∈K

Vkle
xl + nk, k ∈ K, (2)

with cross-talk factors Vkl ≥ 0 and background noise vari-
ances nk > 0 [2], [4].

We can agree on three main criteria, with respect to con-
vergence, realizability and complexity, which identify an on-
line power allocation algorithm solving (1) as efficient.
1) The algorithm has to exhibit sufficiently fast quotient con-
vergence. This allows the power (re-)allocation process to
follow the high dynamics of network topology, traffic char-
acter and large-scale channel fading with acceptable latency.
The quotient convergence is measured by the norm-dependent
convergence factor and norm-independent convergence order.
Definition Let SI(x̃) be the set of all iterate sequences gen-
erated by some iteration I and convergent to x̃.
i.) The p-th quotient convergence factor (p ≥ 1) of I at x̃ is
defined as1 Qp(I, x̃) = sup{x(n)}∈SI(x̃) qp({x(n)}, x̃), with
qp({x(n)}, x̃) = lim supn→∞‖x(n + 1) − x̃‖/‖x(n) − x̃‖p.
ii.) The quotient convergence order of I at x̃ is defined as2

OQ(I, x̃) = infp≥1:Qp(I,x̃)=∞ p.
For instance, regardless of the iteration parameters for gradient-
based methods we always have OQ(I, x̃) ≤ 1 (frequently
OQ(I, x̃) = 1, i.e. linear convergence), while for the supe-
rior Newton method it may hold OQ(I, x̃) = 2 (quadratic
convergence). In some real-world network cases linear con-
vergence may prove to be insufficient, while the quadratic one
is regarded as fastest achievable in practical applications.
2) The algorithm has to be realizable in a decentralized man-
ner. An implementation requiring local actions at certain nodes
based on their local knowledge conforms to the ad-hoc net-
work nature and makes the existence of some centralized con-
troller superfluous. Hereby, we regard the provision of nec-
essary local knowledge by means of peer-to-peer feedback at
each link as maintainable (see the concept in [5]).
3) The iteration has to be of unconstrained nature. By uncon-
strained nature we mean here that, while the obtained mini-
mizer of (1) is obviously feasible (means: satisfies constraints
in (1)), no attention needs to be payed for feasibility of con-
secutive iterates. This brings complexity advantages and avoids
the deterioration of the convergence factor as the consequence
of e.g. projection of infeasible iterates on the feasible set.
Moreover, in some cases such projection on the feasible set
requires global network knowledge, which could make re-
quirement 2) hardly satisfiable as well.

1Defined in this way only if x(n) = x̃ for finitely many n ∈ N.
2Notice that Qp = 0 for p ∈ [1, p0), Qp = c < ∞ for p = p0 and

Qp = ∞ for p ∈ (p0,∞).

3. APPROACH WITH MODIFIED LAGRANGEAN

Our experience shows that any traditional approach (e.g. New-
ton method + barrier functions) applied directly to the form
(1) fails at satisfying the requirements 1-3) concurrently. This
pushes us to a specific reformulation of (1) of the form

min
x,I

∑
k∈K

αkφ(
exk

Ik
), s.t.

{
exk − p̂k ≤ 0
Je

k(x) − Ik = 0
, k ∈ K. (3)

For this problem we utilize a modified Lagrange function

Lψ(z)=
∑
k∈K

αkφ(
exk

Ik
)+

∑
k∈K

ψ(µk)(exk−p̂k)+
∑
k∈K

λk(Je
k(x)−Ik),

(4)
with z := (x, I, µ,λ) ∈ R

4K and function ψ satisfying
Condition C2 i.) ψ : R → R+, ii.) ψ(−µ) = ψ(µ), µ ∈ R,
iii.) ψ(µ) = 0 iff µ = 0, iv.) ψ′(µ) = 0 iff µ = 0, v.)
ψ′′(µ) > 0, µ ∈ R.
A simple example of a function satisfying Condition C2 is
ψ(µ) = µ2. The proof of the following statement is a straight-
forward consequence of Condition C2.
Lemma 1 A vector (x, I, ν, λ) satisfies the Karush-Kuhn-
Tucker (KKT) conditions for (3) iff a vector (x, I,µ, λ), such
that (x, I) is feasible (satisfies constraints in (3)) and
ψ(±µk) = νk, k ∈ K, is a stationary point of Lψ .
In the light of the above Lemma and the fact that domLψ =
R

4K , the primal-dual search of stationary points of Lψ is a
suitable concept for solving (3) by an unconstrained iteration
(requirement 3)). From the classical framework of primal-
dual optimization, which can be easily seen to hold for the
modified Lagrangean Lψ in unchanged form [8], it follows
further that our interest is in special stationary points

z̃ = arg max
(µ,λ)∈R2K

min
(x,I)∈S(x̃,Ĩ)

Lψ(z), (5)

(max-min points) representing the saddle points of Lψ , i.e.
satisfying additionally

z̃ = arg min
(x,I)∈S(x̃,Ĩ)

sup
(µ,λ)∈R2K

Lψ(z), (6)

with S(y) as some neighborhood of y. This is because sta-
tionary points (6) correspond to local minimizers of (3) [8].

For finding the desired point z̃, we construct the iteration
referred later to as I and taking the form⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
x(n+1)
µ(n+1)

]
=

[
x(n)
µ(n)

]
−H−1

x,µLψ(z(n))

[
∇xLψ(z(n))
∇µLψ(z(n))

]
,

(I(n+1), λ(n+1)) solving

[
∇IL

ψ(z(n+1))
∇λLψ(z(n+1))

]
= 0, n ∈ N,

with3

Hx,µLψ(z) :=
[∇2

xLψ(z) ∇2
x,µLψ(z)

∇2T
x,µLψ(z) ∇2

µLψ(z)

]
. (7)

3We use the formalism [∇2
a,b(·)]kj := δ2(·)/δakδbj , k, j ∈ K,

∇2
a(·) ≡ ∇2

a,a(·).
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Iteration I can be classified as a conditional Newton-based
search or a Newton-based search under reduced dimension-
ality. For interference functions satisfying Condition C1, the
blocks of the Hessian in (7) have the crucial property of be-
ing diagonal. Hence, H−1

x,µLψ(z) consists of blocks (corre-
sponding to those in (7)), which are all diagonal and their
k-th diagonal elements are explicitly expressible as functions
of k-th diagonal elements of the corresponding blocks in (7).
Consequently, the inverse of the Hessian in I is obtainable by
simple elementwise operations. The other crucial property of
iteration I is the explicit solvability of the equation system in
I for (I(n + 1), λ(n + 1)), since with (4) this system can be
written as{

Ik(n + 1) = Je
k(x(n + 1))

λk(n + 1) = −αkφ′( exk(n+1)

Ik(n+1) ) exk(n+1)

I2
k(n+1)

, k ∈ K. (8)

The above properties play a decisive role in the combination
of quadratic convergence with distributed realizability of I.

4. LOCAL CONVERGENCE AND DUALITY

Proposition 1 Assume z̃ some stationary point of Lψ , such
that Hx,µLψ(z̃) is nonsingular and each of the mappings ψ′′,
δ2Je

k/δx2
l and φ′′

x,I(xk, Ik) := φ′′( exk

Ik
), k ∈ K is Lipschitz-

continuous on some neighborhood of the orthogonal projec-
tion of z̃ on its domain. Then, z̃ is a point of attraction4 of I
and OQ(I, z̃) = 2.
Remark on the proof: The attraction property and OQ(I, z̃) ≥
1 is proven by showing that the conditional iteration I is
equivalent to the unconditional discrete Newton method (on
restricted dimension), with the direction matrix being a stron-
gly consistent approximation of Hx,µLψ(z) at z = z̃ [9].
OQ(I, z̃) = 2 follows then from the Lipschitz conditions.
As already mentioned, additionally to the convergence, we
need the point of attraction to be a saddle point satisfying (5-
6). Consider therefore the following simple Lemma.
Lemma 2 A stationary point z̃ of Lψ is a max-min point (5),
such that (x̃, Ĩ) is feasible, iff it is a saddle point (5-6), iff Lψ

is locally strictly convex as a function of (x, I) in some neigh-
borhood of z̃, with (x̃, Ĩ) feasible.
Remark on the proof: The statement follows from the analy-
sis of the second order condition for the max-min point (5),
which is given e.g. in [7].
Lemma 2 characterizes the case of usability of primal-dual
optimization methods in general, with I as only a special case
[8]. In fact, the characteristics of (φ, Je

k ), k ∈ K may prevent
Lψ from being locally strictly convex as a function of (x, I) at
some stationary point corresponding to a local minimizer of
(3), or even at any feasible stationary point. In such cases of

4Despite of the convergence, iteration I is in general not a monotone
descent iteration. The descent property retaining quadratic convergence may
be however enforced by introducing in I a damping factor sequence {a(n)},
such that for some n0 ∈ N holds a(n) = 1, n ≥ n0 [9].

local/ global lack of strong duality, primal-dual methods (and
hence also I) are unable to find the desired minimizers.

5. UNIQUENESS OF THE SADDLE POINT

We are interested in the case of a saddle point z̃ in the sense
of (5-6), which represents a unique stationary point of Lψ

for all feasible (x, I). In such case the unique saddle point
corresponds to the global minimizer of (3). Recall that by
the remark on the proof to Proposition 1, I is equivalent to a
discrete Newton method. Hence, by the (extended) Newton-
Kantorovich Theorem [9] one can show that I converges to
z̃ being a saddle point (5-6) and a unique feasible stationary
point of Lψ if i.) strict complementarity holds at z̃ (see [8]),
ii.) z(0) ∈ S, with some S 	 z̃, iii.) ‖H−1

x,µLψ(z(0))‖ ≤
β(S), with some S-dependent bound β(S), iv.) each of the
mappings ψ′′, δ2Je

k/δx2
l and φ′′

x,I(xk, Ik), k ∈ K is Lipschitz-
continuous on the orthogonal projection of S on its domain.
Such kind of convergence behavior is referred to as semi-
local5 (obviously, the property OQ(I, z̃) = 2 still holds).

The problem formulation (3) turns out to be unfavorable
in terms of the property of a saddle point (5-6) as a unique
feasible stationary point. In particular, a class of functions (φ,
Je

k ), k ∈ K leading to a convex power allocation problem (3),
and hence enforcing such property, is small and not useful for
QoS considerations. In order to characterize a wider class of
functions yielding the desired property, we rewrite problem
(3) as a min-max problem over (x, I), i.e.

min
x

max
I

∑
k∈K

αkφ(
exk

Ik
), s. t.

{
exk − p̂k ≤ 0
Ik − Je

k(x) ≤ 0
, k ∈ K.

(9)
By separating the constraints for minimization and maximiza-
tion variables, e.g. according to Ik − t ≤ 0, t − Je

k(x) = 0
with some telescope variable t ∈ R, the modified Lagrangean
for (9) takes the form6

Lψ(z, t)=
∑
k∈K

αkφ(
exk

Ik
) +

∑
k∈K

ψ(µk)(exk − p̂k)

+
∑
k∈K

λJ
k(t − Je

k(x)) −
∑
k∈K

ψ(λI
k)(Ik − t),

(10)

with z := (x, I,µ, λJ , λI) ∈ R
5K . The form of the Newton

iteration in I applied to Lagrangean (10) retains its form. The
blocks in Hx,µLψ(z, t) retain their diagonality under Con-
dition C1. The new equation system in I consists of equa-
tions ∇IL

ψ(z(n + 1), t) = 0, ∇λJ Lψ(z(n + 1), t) = 0,
∇λI Lψ(z(n + 1), t) = 0 and δ

δtL
ψ(z(n + 1), t) = 0 and

can be shown to be equivalent to the formulation in (8), with

5Notice that global convergence, independent of z(0), is prevented only
by the fact that the construction of Lψ enforces some stationary points corre-
sponding to some infeasible (x, I), which are potential points of attraction.

6Notice that now we have to search for the stationary point of Lψ with
respect to the pair (z, t).
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λ(n + 1) ≡ −λJ(n + 1) and ψ(λI
k) ≡ −λJ

k , k ∈ K. Under
the current problem formulation and the required uniqueness
of the saddle point z̃ as a feasible stationary point, the charac-
terization (5-6) translates into⎧⎪⎨

⎪⎩
z̃ = arg max

I∈RK
max

(µ,λJ )∈R2K
min
x∈RK

min
λI∈RK

Lψ(z)

z̃ = arg min
λI∈RK

min
x∈RK

max
(µ,λJ )∈R2K

max
I∈RK

Lψ(z).
(11)

The sufficient characterization of (φ, Je
k ), k ∈ K enforcing the

uniqueness property of the saddle point, and hence allowing
for semi-local convergence of I to the globally optimal power
allocation, can now be given.
Proposition 3 Under Condition C1, the Lagrangean (10) has
a saddle point (11) which is the unique feasible stationary
point, if the functions φe(y) := φ(ey) and Je

k , k ∈ K satisfy⎧⎪⎨
⎪⎩

φ′′
e (y) + φ′

e(y) ≤ 0
φ′′

e (y) ≥ 0
δ2Je

k(x)

δx2
l

≥ 0, k, l ∈ K,

(12)

with either of the inequalities strict.
Remark on the proof: The result follows from the second or-
der characterization of so-called max-min functions and con-
vex-concave functions [7] applied to (10).
The function class characterized by (12) includes the func-
tions φ(y) = − log(y) or φ(y) = 1/y under the convexity of
the interference functions Je

k , k ∈ K (e.g. linear receiver case
(2)). Hence, a particular implication of Proposition 3 is, that I
provides semi-local quadratic convergence to the global mini-
mizer in the problem of optimization of weighted sum of link
data-rates (in high power regime) and bit-error-rate slopes in
linear receiver networks.

6. DISTRIBUTED REALIZATION SCHEME

On the example of problem formulation (3), in this section
we present an implementation scheme of iteration I, assum-
ing linear interference functions under no self interference,
i.e. taking (2) with Vkk = 0, k ∈ K. The main role in the
distributed scheme plays the concept of adjoint network feed-
back from [5], [6]. This concept allows for the provision of
the values

∑
j �=K Vjkak (a ∈ R

K
+ ) to the corresponding trans-

mitters k ∈ K by means of a concurrent transmission of all
receivers k ∈ K under the use of channel predistortion and
additional per-link (peer-to-peer) feedback of certain values
(see [5], [6] for details). Denote by ∆x, ∆µ and ∆x,µ, ∆T

x,µ

the blocks of H−1
x,µLψ(z) corresponding to those in (7). The

blocks ∆ are diagonal and the k-th diagonal element of each
block ∆ can be easily shown to have the dependence

[∆]kk(n)=[∆]kk(exk(n), Ik(n), µk(n),
∑

j∈K,j �=k λj(n)Vjk),

k ∈ K, n ∈ N. Exactly the same type of dependence holds
also for the corresponding gradient components [∇x]k(n) :=
[∇xLψ(z(n))]k and [∇µ]k(n) := [∇µLψ(z(n))]k, k ∈ K,

n ∈ N. The elementwise description of iteration I is now
given by (8) and{
xk(n+1)=xk(n)−[∆x]kk(n)[∇x]k(n)−[∆x,µ]kk(n)[∇µ]k(n)
µk(n+1)=µk(n)−[∆x,µ]kk(n)[∇x]k(n)−[∆µ]kk(n)[∇µ]k(n).

(13)
With this, a decentralized realization scheme of I can be de-
scribed as follows (assumed is the knowledge of p̂k at the
transmitters k ∈ K and the knowledge of αk and φ at the
transmitters and receivers k ∈ K).

1. Concurrent transmission with p = exp(x(n));
→ exk(n) and Je

k(x(n)) obtainable at receivers k ∈ K
→ λk(n) and Ik(n) computable at receivers k ∈ K
from (8).

2. Per-link feedback of values Ik(n) to transmitters k ∈
K and adjoint network feedback with signal powers
λk(n), k ∈ K [5];
→ ∑

j∈K , j �=k λj(n)Vjk computable at transmitters k ∈
K.

3. Computation of component iterations (13) at transmit-
ters k ∈ K → n := n + 1.
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