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ABSTRACT

Considering two correlated vector sources x, y ∈ R
N , we address

the problem of lossy coding of x with uncoded side information y
available at the decoder. The general non-linear mapping between

y and x capturing their correlation can be approximated through a

linear model y = Hx + n in which n is independent of x. View-

ing this model as a virtual communication channel with input x and

output y we utilize linear precoding and decoding technique to con-

vert the original vector source coding problem into a set of man-

ageable scalar source coding problems. The scalar source coding

problems can be solved using the existing distributed source cod-

ing algorithms that are primarily designed for the simple correlation

model y = x + n where x and y are scalar jointly Gaussian sources.

1. INTRODUCTION

Distributed source coding (DSC) refers to the compression of mul-

tiple correlated sensor outputs that do not communicate with each

other [1]. Exploiting the inherent correlation structure which exists

between the data sensed by the sensors would enable the sensors to

compress their outputs efficiently without knowing explicitly other

sensors’ outputs. In fact if the joint distribution characterizing the

correlation structure is known at both the encoders and the joint de-

coder, the sensors with separate encoders can achieve a compression

rate as low as the sensors with joint encoders under certain circum-

stances. The theoretical foundation of this result has been estab-

lished in the information theory literature under the name of Wyner

and Ziv (WZ) source coding theorem [2].

Consider two arbitrary correlated scalar sources x and y. The

WZ lossy source coding problem refers to encoding x with respect to

a fidelity criterion, e.g., distortion measured by mean squared error

(MSE), assuming that the decoder has access to y. In their landmark

paper [2] Wyner and Ziv derived the rate-MSE distortion function

for encoding source x when the related source y is known at the de-

coder. They proved that unless x and y are jointly Gaussian the WZ

coding suffers rate loss comparing with lossy coding of x when y is

available at both the encoder and the decoder. Nested lattice codes

were first introduced in [3] as codes that can achieve the WZ limit

asymptotically. Based on the partitioning ideas of [3] the authors in

[1] considered trellis-based nested codes as a way of realizing nested

lattice codes. We note that the work in [1] was restricted to Gaussian

scalar sources x and y where x and y are related through y = x + n
and the noise term n is Gaussian and is independent of x.

In this paper we propose DSC algorithms which are applicable

to a wider range of correlation model. In particular, we consider the

scenario where the relationship between the vector sources x and y
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Fig. 1. WZ lossy source coding with side information at the decoder.

can be modelled as:

y = Hx + n (1)

where n is independent of x. This model can be viewed as a first

order approximation of a general non-linear mapping between y and

x. Viewing this dependency as a fictitious communication channel

with input x and output y and following the ideas in [3], one might

think of searching for lattice channel codes suitable for this type of

channels [4]. However, the complexity of these constellations are

prohibitively high. As a simple albeit suboptimal architectural al-

ternative communication systems utilize linear precoding to cope

with the distortion imposed on x by H [5].The linear precoding de-

sign paradigm is based on an optimal pair of linear transformation F
(precoder) and G (decoder) of blocks of transmit symbols x and re-

ceive samples y that operate jointly. Given channel state information

(CSI) at both the transmitter and the receiver, the design of (F , G)

appropriately takes advantage of this knowledge to use the transmit

resources efficiently while maintaining a reasonable complexity [5].

Exploiting the paradigm of linear precoding/decoding, that has

never been explicitly exploited in the DSC arena, we propose to con-

vert the original vector source coding problem into a set of parallel

scalar source coding problems with the scalar side information at the

decoder, where there is a one-to-one correspondence between each

scalar source and scalar side information. With this conversion, we

are able to use the existing constructive WZ codes (e.g., the code in

[1]) to implement the general problem of vector sources. We con-

sider a codec where the source encoder and the joint decoder have

the knowledge of the correlation model parameters. In practice the

encoder and the decoder learn the correlation model parameters in

a training phase. These parameters are incorporated into designing

the encoder and the decoder. Furthermore, utilizing the correlation

model the encoder calculates the encoding rates which minimize the

MSE-distortion occurred due to the reconstruction of x at the de-

coder. The encoder encodes using these calculated rates.

The paper is organized as follows: Section 2 describes the prob-

lem of lossy coding of x with side information y where x and y are

related through (1). Section 3 overviews DISCUS, a specific DSC

construction [1] which we use as the baseline of our work. Section 4

clarifies the role of linear preocder and decoder in our proposed al-

gorithm. Section 5 elaborates the proposed coding algorithm and the

codec architecture. Section 6 explains the rate allocation procedure.

Numerical results and conclusion follow in Section 7.
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Notation: Upper case and lower case boldface letters denote

matrices and vectors, respectively. The i-th entry of vector a and

the (i, j)-th entry of matrix A are presented as ai and [A]ij , respec-

tively.

2. PROBLEM STATEMENT

Consider the class of vector sources with outputs x, y ∈ R
N whose

statistical dependency can be approximately captured through the

model in (1). Regarding (1) we assume (a1) n and x are indepen-

dent and H is a constant matrix, (a2) x is zero mean with a covari-

ance matrix Rxx and n ∼ N (0, Rnn). Our setup can be described

as follows: the decoder has access to y (side information). The en-

coder compresses x, considering the fact that the decoder knows

y. The decoder reconstructs x using the side information y as well

as the compressed data transmitted by the encoder. To be able to

reconstruct x with a reasonable MSE-distortion, the decoder needs

to fully exploit the correlation between x and y. This requires the

knowledge of the correlation model parameters at the decoder, i.e.,

H and Rnn
1. Relying on the knowledge of H and Rnn the en-

coder calculates the rate at which it should compress x such that the

decoder is able to reconstruct x with a certain MSE-distortion. The

compression is performed in transform domain, i.e., the encoder en-

codes the vector s = F x where F is a linear transform. Our goal is

to design compression algorithms of polynomial complexity that are

suitable for the correlation model in (1) and provide a good approx-

imation of x.

3. OVERVIEW OF DISCUS

In an attempt to achieve the bound predicted in [2] Pradhan and Ram-

chandran proposed a practical DSC scheme called DISCUS (distrib-

uted source coding using syndromes) [1]. Inspired by the random

binning idea used in [2] to establish the theoretical results, the au-

thors propose a code construction for the simple correlation model

y = x + n where x and y are jointly Gaussian. In their scheme

the encoder consists of (i) a source space partition, in which the en-

coder partitions the real line into disjoint quantization intervals and

finds the index of the interval to which the quantized x belongs to2,

and (ii) a coset code partition, in which the encoder partitions the

reconstruction points of the quantizer into bins (cosets). Encoding

with side information consists of finding the index of the coset con-

taining the quantized x and sending the index at a rate (which we

refer to it as coset rate and restrict it to be less than or equal to the

quantization rate) to the decoder over an error free channel [1]. The

decoder in [1] consists of (i) source code recovery, in which the de-

coder decides the quantized x as the one which is closest to y (in the

sense of Euclidean distance) in the coset whose index is sent by the

encoder, and (ii) an estimator, in which the decoder forms the opti-

mal estimate x̂ = E{x|y, x ∈ Γi} where Γi is the decided quantiza-

tion interval. The following example describes the code construction

at the encoder and the reconstruction at the decoder (See figure2):

Example [1]: Consider a uniform quantizer with Q = 8 quanti-

zation levels. Let C = {c1, . . . , c8} and G = {Γ1, . . . , Γ8} denote

the set of reconstruction points and the quantization intervals, re-

spectively. The quantization rate is log2 8 = 3 bits/sample. Target-

ing the transmission rate of 1 bit/sample we partition C into 21 = 2
cosets R1 = {c1, c3, c5, c7} and R2 = {c2, c4, c6, c8}. Assuming

that x ∈ Γ5, the encoder transmits the coset index 1 at the rate of

1Estimating H and Rnn at the encoder and decoder is itself an interest-
ing problem and deserves a special treatment which is beyond the scope of
this paper.

2For simplicity we focus on the case of scalar quantization and memory-
less coset construction in [1].
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Fig. 2. Quantization intervals for a uniform quantizer with Q = 8
levels .

1 bit/sample. Knowing that the quantized x belongs to coset 1 and

observing y the decoder declares Γ5 as the interval (i.e., error free

detection) and forms x̂ = E{x|y, x ∈ Γ5} .

While applying the minimum distance (MD) rule to decide the

quantization intervals is justified for the correlation model y = x+n
it is not justified for the case where the correlation model is more

elaborate, e.g., the correlation model is (1).

4. LINEAR PRECODING AND DECODING IN SOURCE
CODING

Using a pair of linear precoder and decoder (F , G) we convert the

dependency model of (1) into a simple model:

z = Λs + w (2)

where s = F x, Λ is a diagonal matrix, and z = Gy and w = Gn
are the new side information and the new noise term, respectively.

By establishing a one-to-one correspondence between the entries of

s and z we propose to use a scheme where the decoder performs

an entry by entry based MD detection as in [1]. Unless n is col-

ored, w is white and hence the MD detection followed by entry by

entry based symbol estimation is optimal. For the case where n is

colored we apply a vector estimation at the decoder to improve the

estimate by taking in to account the noise color. Assuming that Rxx

is known at the encoder, we let u = UT
x x where Ux is obtained

from the EVD of Rxx, i.e., Rxx = UxΣUT
x and the transformed

coefficients u are uncorrelated. We rewrite (1) as:

y = HUxu + n (3)

We introduce the SVD of HUx = UhuΛV T
hu. Defining s =

V T
huu and post multiplying (3) with UT

hu we obtain z = UT
huy =

Λs + w where w = UT
hun and has the covariance matrix Rww =

UT
huRnnUhu. In a nutshell using the pair of linear precoder and

decoder:

F = V T
huUT

x G = UT
hu

we convert the dependency model of (1) into the simple model in

(2). In fact the output of the decoder z provides us with an initial
estimate of s. Incorporating the data sent by the encoder (i.e., the

coset indices) the decoder refines this initial estimate and obtains an

improved estimate that results in less MSE-distortion.

5. ALGORITHM DESCRIPTION
The encoder of our proposed system consists of (i) a linear precoder

F to transform x to s, (ii) N fixed rate scalar uniform quantizers,

and (iii) N coset partitioners that operate in parallel. The encoder

quantizes the entries of s and finds the indices of the cosets to which

the quantized entries belong to. Let ri bits/sample denote the rate

at which the coset index corresponding to encoding si is sent to the

decoder, i.e., ri is the coset rate. The encoder sends these indices

at the total rate of R =
∑N

i=1 ri bits/vector. The decoder has three

parts (i) a linear decoder G to form z using y, (ii) N MD rule

detectors that operate in parallel, and (iii) a vector estimator.
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Fig. 3. The architecture of the proposed codec

5.1. Encoder Side: Quantization and Coset Partitioning

The entry si is quantized with the i-th quantizer which has Qi levels

and a step size ∆i. We define the quantization rate as rsi = log2 Qi.

The i-th quantizer partitions the real line into Qi disjoint intervals.

Each interval corresponds to an input signal amplitude in that inter-

val and is associated with a reconstruction point ci
q q = 1, . . . , Qi.

We call the set {ci
q}Qi

q=1 the source codebook Ci associated with the

i-th quantizer. We construct the cosets as follows: let ri bits/sample

be the coset rate and define the total number of cosets as Pi = 2ri .

We partition Ci into Pi cosets, namely Ri
p p = 1, . . . , Pi, such

that each coset Ri
p includes Mi = Qi/Pi reconstruction points.

Clearly we have ri = rsi − rci . Let Ri
p = {ri

p,1, . . . , r
i
p,Mi

} for

p = 1, . . . , Pi. The coset partitioning is such that the elements

of Ri
p are related to the elements of Ci through the relationship

ri
p,m = ci

Pi(m−1)+p m = 1, . . . , Mi p = 1, . . . , Pi. In words,

considering Ci we let the first Pi elements of Ci to be the first ele-

ments of the Pi cosets, the second Pi elements of Ci to be the sec-

ond elements of the Pi cosets and so on, while we preserve the order

during assigning (See Fig. 2). Given the index of the quantization

interval q the index of the coset p can be found as p = q mod Pi.

Let N = 1 and consider Example 1. Given s1 ∈ Γ1
5 the quantizer

quantizes s1 to c1
5 and finds the index of the coset as 1 = 5 mod 2.

5.2. Decoder Side: MD rule Detecting and Vector Estimation

In (2) we establish a one-to-one correspondence between the entries

of z, s, and w. Equivalently, we have zi = [Λ]iisi + wi i =
1, . . . , N where wi has the variance σ2

wi
= [Rww]ii. Given the

coset index p for each entry si, the decoder applies the MD rule to

decide the quantized value of si in p-th coset that is closet in distance

to zi, i.e., ri
p,m∗ = arg minri

p,m∈Ri
p
||zi − [Λ]iir

i
p,m|| and declares

Pi(m
∗ − 1) + p as the index of the interval to which si belongs.

The entry by entry MD detector provides the indices of the quan-

tization intervals. Knowing these intervals we form the vector esti-

mate ŝ and consequently x̂ = F −1ŝ. To find a closed form expres-

sion for x̂ we assume that s and y are jointly Gaussian. For jointly

Gaussian s and y the conditional statistics are [6]:

µ = (R−1
ss + HT R−1

nnH)−1HT R−1
nny

Rs|y = (R−1
ss + HT R−1

nnH)−1

where H = HF −1 and Rss = V T
huΣV hu. Lemma 1 provides

the expression for ŝ. The proofs are omitted due to lack of space [6]:

lemma 1: Let Vs denote the N dimensional volume whose edges
are determined by the decided quantization interval. Define v =
UT (s − µ) and let Vv denote the new volume we wish to integrate
over which is obtained from transforming Vs in the new coordinate

system. The optimal vector estimate ŝ = E{s|s ∈ Vs, y} is:

ŝ = µ +

N∑

j=1

Uej

∫
v∈Vv

vje
− 1

2
∑N

i=1 v2
i /[Λs|y ]iidv

∫
v∈Vv

e−
1
2
∑N

i=1 v2
i /[Λs|y ]iidv

(4)

in which ej is an all-zero vector whose j-th entry is one, U and Λs|y
are obtained from the EVD of Rs|y = UΛs|yUT . The integral can
be numerically evaluated using Gaussian quadrature technique [6].

Remark: The estimator ŝ is decomposed into two terms: µ
is the optimal estimate of s when the encoder does not send any

data to the decoder and the decoder forms an estimate using the side

information y. The second term is the refinement in the estimation

resulting from the extra bits (coset indices) that the encoder sends.

6. RATE ALLOCATION POLICY
We let the quantization rates rsi i = 1, . . . , N to be:

rsi = max{0, �1

2
log2

σ2
si

θ
�} i = 1, . . . , N (5)

where σ2
si

= [Rss]ii and θ is a parameter which for simplicity we

choose to be identical for ∀i. Consider reconstruction of {si}N
i=1 at

the decoder given a set of coset rates {ri}N
i=1 and a value of θ. Let

pei represent the average probability of error occurred during the

detection of the quantization interval to which si belongs. Clearly

pei depends on {rsi}N
i=1 (which is determined by the choice of θ),

the target total coset rate R =
∑N

i=1 ri (which for compression

purpose we wish R <
∑N

i=1 rsi ), and {ri}N
i=1. The MSE-distortion

occurred during the reconstruction of {si}N
i=1 can be bounded if the

MD rule detectors at the decoder make least error in deciding the

quantization intervals. Given θ and the target rate R bits/vector we

define the optimal coset rates {r∗i }N
i=1 as:

{r∗i }N
i=1 = arg min

N∑

i=1

pei (6)

subject to N inequality constraints 0 ≤ ri ≤ rsi and an equality

constraint
∑N

i=1 ri = R. In the following we provide an upper

bound on pei: recall zi = [Λ]iisi + wi i = 1, . . . , N . We rewrite

si as si = ci
q + εi where ci

q and εi denote the quantized value of

si and the quantization error, respectively. Combining these two

relations we obtain zi = [Λ]iic
i
q + νi where νi = [Λ]iiεi + wi is

the equivalent noise term. Assuming that εi and wi are uncorrelated

we have σ2
νi

= ([Λ]ii)
2E{ε2

i } + σ2
wi

where E{ε2
i } is the MSE-

distortion induced by the i-th quantizer.

Lemma 2: Suppose 0 ≤ ri < rsi . Assuming that νi ∼ N (0, σ2
νi

)

and is independent of ci
q , an upper bound on pei is:

pei < 0.5exp{−∆2
i 2

2ri

8σ2
νi

} (7)

for ri = rsi by the definition of pei we let pei = 0.
Using the upper bound in (7) as an expression for pei we present

an iterative rate allocation algorithm which solves (6) subject to the

constraints. A similar algorithm has been proposed in [8] for as-

signing bits to the subcarriers of a single user in a multiuser OFDM

system in which the authors minimize the total transmit power under

the single user rate constraint. Given θ and R, the bound on pei is a

convex and decreasing function of ri over the range 0 ≤ ri < rsi ,

i.e., pei(ri + 1) < pei(ri) where pei(r) is the expression evaluated

at ri = r. We propose a greedy algorithm which assigns bits to

the streams i = 1, . . . , N one bit at a time, and in each assignment
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the stream that results in the largest error probability reduction is se-

lected. The bit allocation process is completed when all R bits are

assigned. The pseudo code of the algorithm follows:

Let ri = 0 and ∆pei = pei(0)−pei(1) for i = 1, . . . , N
for r=1:R
i∗ = arg maxi∆pei and ri∗ = ri∗ + 1
if ri∗ == rsi∗ then ∆pei∗ = −K
else ∆pei∗ = pei∗(ri∗) − pei∗(ri∗ + 1)
end

end
where we choose K > 1. The final bit allocation solution is {r∗i }N

i=1.

Relying on the correlation model parameters the encoder forms the

expression pei, finds {r∗i }N
i=1, and utilizes these rates to encode si.

7. NUMERICAL RESULTS

In practice the source encoder has hardware limitation and thus uses

a fixed set of quantizers. Also the value for R can be roughly esti-

mated assuming that there is a constraint on the amount of energy

that can be spent to transmit a bit of information and that there is a

limited power budget available at the source encoder. In our simu-

lation we further investigate the effect of the particular choices for

θ and R on the performance of the codec which employs the rate

allocation algorithm described in Section 6.

The experiment parameters are the following: N = 4, H and

Rxx are Toeplitz matrices with first row [1 ρ ρ2 ρ3] where ρ =
0.6, 0.8, respectively. We generate x and n independently accord-

ing to n ∼ N (0, σ2
nI) with 10log10σ

2
n = −12 dB and x ∼

N (0, Rxx). The horizontal and vertical axes correspond to the total

coset rate R bits/vector and the MSE-distortion (in dB) due to the

reconstruction of x at the decoder, respectively. We choose the set

of θ values as θ = [0.03 0.05 0.08 0.09 0.1 0.15 0.2 0.25].
Figure 4 illustrates the performance of the proposed codec. We

compare the achievable performance against trace(Rx|y) where Rx|y
is the error covariance of x̂ = E{x|y}. The fact that the MSE-

distortion is below trace(Rx|y) indicates that incorporating the ex-

tra bits sent by the encoder reduces the distortion occurred during the

reconstruction of x. As a result of optimization over θ we have ob-

served that as R increases less distortion can be achieved by employ-

ing finer quantizers, i.e., quantizers with higher rates. As a bench-

mark to evaluate the distortion-rate performance of our proposed al-

gorithm, we use the theoretical bounds established in [7] for jointly

Gaussian vectors x and y. The rate-distortion function is [7]:

R(D) = min
Di

N∑

i=1

max{0.5 log2

λ2
i

Di
, 0}

where λ2
i are the N eigenvalues of the matrix Rx|y and the minimum

is over all sets {Di}N
i=1 satisfying

∑N

i=1 Di ≤ D. Figure 4 shows a

wide gap between the codecs performance and the theoretical R(D)
bound. In [7] it is shown that the R(D) bound is achievable if the en-

coder applies conditional Karhünen-Loève transform (obtained from

the EVD of Rx|y) to x and encodes the transformed coefficients.

Furthermore, attaining the bound requires a vector quantization over

an infinite length sequence of uncorrelated transformed coefficients.

To quantify the gain we achieve by coding with side information

we consider a simple codec whose encoder quantizes the entries of s
using the uniform quantizers and sends the index of the quantization

intervals to the decoder. The decoder receives these indices error

free and uses them to form ŝ, without knowing explicitly y. Figure

4 shows that at low rates (e.g. for rates ≤ 8 bits/vector) there is a

significant difference between the attainable distortion by the simple
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Fig. 4. codec without LT at the encoder: performance comparison

with R(D) lower bound, tr(Rx|y), and the simple codec.

codec and the proposed codecs, where the difference decreases as

the rates increases.

In a nutshell in this paper we proposed WZ codecs which are

suitable for a wider class of vector sources x and y where x and

y are related as y = Hx + n. Viewing this dependency model

as a virtual fading channel with input x and output y, we utilize

linear precoder and decoder to convert the problem of vector source

coding into a set of parallel scalar source coding problems. Using

this technique, we can use the WZ codes designed for the simple

model y=x + n for the more general model y =Hx + n. We also

proposed a simple rate allocation policy for assigning encoding rates

to each scalar sources.
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