
ERASURE RESILIENT CODES IN PEER-TO-PEER STORAGE CLOUD 

Jin Li (jinl@microsoft.com)

Microsoft Research, Communication and Collaboration Systems, One Microsoft Way, Bld. 113, Redmond, WA 98052 

Qiang Huang (qhuang@princeton.edu)

Department of Electrical Engineering, Princeton University, Princeton, NJ 08540. 

ABSTRACT
In this paper, we investigate the use of erasure resilient code 

(ERC) in a peer-to-peer storage cloud. We compare the random 

linear code (RLC, network coding) and the Reed-Solomon (RS) 

code, and study the proper ERC parameters in term of data reliabil-

ity, computational efficiency and security concerns. We conclude 

that the use of ERC in P2P storage may greatly improve data reli-

ability and reduce backup server cost. Because of the lack of effi-

cient homomorphic hashing, RLC can not be implemented effi-

ciently and yet be effective against the malicious attack. As a result, 

we believe that the RS code is most suited for use in the P2P stor-

age cloud.

1. INTRODUCTION 

Peer-to-peer (P2P) applications, such as Napster, Kazaa, Bit-

Torrent and Skype, have witnessed tremendous success among the 

end users. A unique characteristic of the P2P application is that the 

peers bring with them serving capacity when they join the network. 

Therefore, as more peers participate in the system and the demand 

of a peer-to-peer system grows, the capacity of the system grows 

too. Moreover, the majority of the capacity is paid by the peers. 

This is in sharp contrast to the traditional client-server system, 

where the server capacity is fixed and paid for by the provider. As a 

result, the P2P application is cheap to build and superb in scalabil-

ity.  

In this paper, we are particularly interested in P2P storage 

cloud. In such P2P applications, the peer contributes not only the 

bandwidth but also the hard drive space to serve the other peers. 

The collective storage space contributed by the peers form a P2P 

storage cloud. Data may then be stored into and retrieved from the 

cloud. P2P storage cloud can be used for a number of applications. 

One is the distributed backup. The peer may backup its own data 

into the P2P cloud. When the peer fails, the data may then be re-

stored from the cloud. Another P2P application is the distributed 

data access. Because the retrieving client may recover the data from 

multiple data holding peers, the P2P data retrieval may have higher 

throughput compared with retrieving data from a single source. The 

other interesting application is on-demand movie viewing [7], in 

which multiple servers may collaborate with the P2P cloud to serve 

movies on-demand, as shown in Figure 1. The server may seed the 

P2P cloud with movies. Then when the peer is viewing the movie, it 

may stream the movie from both the P2P cloud and the server, thus 

reduce the server load, reduce traffic on the network backbone and 

improve the streaming movie quality.  

Note that there are extensive research works on building mass 

reliable storage device in a server cluster, e.g., [2]. However, a P2P 

storage cloud differs from a server cluster (also called a computer 

farm or ranch) in three important aspects. First, the peers in a P2P 

application are distributed over a wide area network (WAN) with 

large geographical diversity, while the server cluster is formed by a 

group of networked servers in one location with fast backbone con-

nection. Second, all servers in a server cluster stays in a trustworthy 

environment, firewall and security mechanism only needs to be 

implemented at the boundary of the server cluster. This is not the 

case in a P2P network, where there may be malicious peers who are 

interested to explore the weakness of the protocol. Third, the reli-

ability of the peer and its network connection is several orders of 

magnitude lower than that of the server. Because the peer is usually 

an ordinary consumer computer that is running the P2P software 

and contributing its spare hard drive space and idle bandwidth re-

source, the computer or the P2P application might be shut down by 

the user from time to time for a variety of reasons, e.g., the need to 

upgrade and patch the software, the need to install/update hardware, 

virus attack, etc.. The user may also launch new applications that 

compete in CPU and bandwidth resource with the P2P application. 

The computer may also connect to the network through an unreli-

able ISP or unreliable WiFi link. Building reliable and high per-

formance data storage cloud in an unreliable, untrustworthy P2P 

network thus poses unique challenge.

A basic tool for achieving data reliably in unreliable P2P cloud 

is high rate erasure resilient code (ERC). The important design 

questions then become: How many copies of the data should be 

stored? In what form should the data be stored? What is the appro-

priate parameter for ERC?  

In the rest of the papers, we will investigate the use of ERC in 

the P2P storage cloud. Two important ERCs: the Reed-Solomon 

(RS) code and random linear code (RLC) are briefly reviewed in 

Section 2. We study the reliability of P2P storage with and without 

ERC, the difference between the RS code and RLC, and the appro-

priate ERC parameters in Section 3. The security concern of P2P 

storage and its implication in the selection of ERCs is investigated 

in Section 4. We study the problem of P2P storage cloud with 

backup server support in Section 5. The mathematical analysis we 

used in the paper is shown in Appendix I.

2. ERC: REED-SOLOMON (RS) AND RANDOM 

LINEAR CODE (RLC) 
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Figure 1 P2P cloud and its role in on-demand movie streaming. 
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ERCs are block error correction codes. In general, ERC seg-

ments an original message into k original fragments {xi}, i = 0,…, k-

1, each of which is a vector over the Galois Field GF(q), where q is 

the order of the field. Say we are encoding a message that is 64KB 

long, if we use GF(216) and k=16, each fragment will be 4KB, and 

will consist of 2K word, with each being an element of GF(216). An 

ERC coded fragment is formed by operation: 

[ ]0 1 1 ,
t

j i kc x x x −= G  (1) 

where cj is a coded fragment, Gi is a k-dimensional generator 

vector, and equ (1) is a matrix multiplication, all on GF(q). At the 

time of decoding, the peer collects m coded fragments, where m is a 

number equal to or slightly larger than k, and attempts to decode the 

k original fragments. This is equivalent to solve the equation:
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If the matrix formed by the generator vectors has a full rank k,

the original messages can be recovered.

There are many existing ERCs. Two types of ERCs that are par-

ticularly interesting is Reed-Solomon (RS) code[1] and random 

linear code (RLC, also called network coding)[3]. The RS code uses 

structured generator vector, e.g., based on the Vandermonde matrix: 
0 1 1 ,k

i i i i −=G  (3) 

or based on the Cauchy matrix: 

[ ]0 0 1 0 0 ,  only th position is 1 

,1 1 1

i+0 i+1 i+(k-1)

i

i k i

i k

<
=

≥
G

(4)

Both RS codes above are maximum distance separable (MDS) 

codes. As a result, any k distinctive coded fragments will be able to 

decode the original message. Because RS codes are structured, RS 

coded fragment can be easily identified and managed by the index i

of the generator vector. This eases the detection of duplicated RS 

codes.

In comparison, RLC (network coding) uses a random linear 

vector for each code. The chief advantage of RLC is that its coded 

fragment can be further combined by the peer to generate new code. 

Let there be two coded fragment generated via vector: 

[ ] [ ]
[ ] [ ]

0 0 1 1 0 1 1

1 0 1 1 0 1 1

,   and
t

k k

t

k k

c x x x

c x x x
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β β β
− −

− −
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= ⋅

 (5) 

where {αi} and {βi} are generator vectors with their elements 

randomly generated. An intermediate receiving peer may combine 

the two coded fragment into a new coded fragment: 

[ ] [ ]2 0 1 0 1 1 0 1 1 ,

with   

t

k k

i i i

c c c x x xξ ζ χ χ χ
χ ξ α ζ β

− −= ⋅ + ⋅ = ⋅
= ⋅ + ⋅

(6)

where ξ and ζ are two random non-zero elements in GF(p). Obvi-

ously, any linear combination of RLC codes is still a valid RLC 

code. RLC store the generator vector together with the coded frag-

ment, i.e., attaching {αi} to c0, {βi} to c1, and {χi} to c2. At the time 

of decoding, a generator matrix is formed with the generator vectors 

attached to the coded fragments. The RLC decoder will examine the 

generator matrix and determine if the associate coded fragments can 

decode the original coded message.

Table 1. Desired replication ratio to achieve 12 nines reliability. 

ERC Methods Reliability p=0.5 p=0.9

r # of peers r # of peers

Non ERC, k=1 40 40 12 12 

Non ERC, k=64 63.34 4054 36.58 2341 

RS, k=8 8.88 71 3.13 25 

RS, k=16 6.13 98 2.31 37 

RS, k=32 4.56 146 1.84 59 

RS, k=64 3.64 233 1.56 100 

RS, k=1024 2.34 2391 1.20 1226 

3. RELIABILITY IN P2P STORAGE CLOUD 

In our first analysis, we show how ERC improves the reliability 

of the P2P cloud. Let there be r copies of messages in the P2P 

cloud. Let the reliability of each peer be p (the peer is available 

with probability p). We show in Figure 2 (with number listed in 

Table 1) the desired replication ratio r if we want the data stored in 

the P2P cloud to achieve a failure rate smaller than 10-12 (i.e., 12 

nines reliability). In Figure 2, the horizontal axis is the peer avail-

ability, and the vertical axis is the desired replication ratio (in log 

scale). The mathematics behind the analysis can be found in Ap-

pendix I. We compare seven approaches: 

a) Non erasure coding, the entire message is replicated to r

peers.

b) Non erasure coding, split message into k=64 fragments, 

then replicate fragments to r⋅ k peers. 

c) RS code, split into k=8 fragments, and distribute fragments 

to r⋅ k peers. We remember RS index so that there are no 

duplicated RS codes in the P2P cloud. 

d), e), f) g) Same as c), except k=16, 32, 64, and 1024. 

To achieve the same reliability, the use of ERC reduces the re-

quired replication ratio by an order of magnitude. For example, with 

peer reliability of p=0.5, we may achieve 12 nines reliability by 

either storing the data into 40 peers without using ERC, or storing a 

coded fragment 1/1024 the size of the message into 2391 peers, 

leading to an actual replication ratio r=2.335. The latter approach 

greatly reduces the amount of the hard drive that the peer needs to 

contribute to the P2P cloud in exchange for reliable data backup.

Note that the simple act of fragmenting the message without us-

ing ERC reduces reliability. Shown in scheme b), if messages are 

split into 64 fragments and distributed to the peers without ERC, we 

will need replication ratio r=63.34. This represents a 58% and 

1640% increase in the replication ratio compared with non ERC 

distribution of whole message and ERC distribution of the message 

with same fragmenting parameter (k=64).
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Figure 2 Peer reliability and desired replication ratio. 
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We also observe that splitting a message into a large number of 

fragments may further reduce the required replication ratio. With 

peer reliability of p=0.5, the required replication ratio decreases 

from r=8.875 to r=2.34 as we increase the fragment size from k=8

to k=1024. The replication ratio decreases by a factor of 3.8:1. With 

peer reliability increases to p=0.9, splitting the messages into 1024 

instead of 8 fragments may still reduce the required replication ratio 

by a factor of 2.6:1. However, this comes at a cost of flexible in-

formation storage and retrieval. The large fragment size requires the 

coded fragment be stored into and retrieved from thousands of peers 

(2391 for p=0.5, 1226 for p=0.9). This is impractical. Even for P2P 

backup, where data is not expected to be updated frequently, the use 

of fragment size k=1024 means that every time a file is modified, 

the user needs to contact thousands of peers to update the data. The 

increase in the administer traffic and the response time makes such 

system impractical. In the authors’ opinion, ERC fragmentation 

with size k=16 to k=64 is more practical in real-world applications.  

Please note that storing multiple fragments into a peer node 

does not improve the reliability. For example, if we split the mes-

sage into 64 fragments, and store 4 fragments in each peer node, the 

reliability will be the same as splitting the message into 16 frag-

ments with each peer storing one fragment. Allowing more frag-

ments to be stored in a peer do help to balance the load in the P2P 

cloud, as peers with more storage space may store more fragments, 

and peers with less storage space may store fewer fragments.  

In Figure 3, we compare the RS code with RLC code. The de-

tail mathematical analysis can be found again in Appendix I. We 

still calculate the desired replication ratio in order to achieve 12 

nines reliability with varying peer reliability. The following five 

schemes are compared:  

a) RLC code, split into k=16 or 64 fragments, and distribute 

the fragments into r⋅ k peers. We use GF(28).

b) Same as a), except GF(216) is used.

c) Same as a), but use RS code. We do not detect duplicate 

RS code.

d) Same as c) except GF(216) is used. 

e) Same as c) and no duplicate RS code in the system. 

We observe except for RS code on GF(28), the rest of ERCs 

perform almost the same. The experiment shows that RLC code and 

RS code achieve almost the same reliability. It also shows that if we 

use RS code in a P2P storage cloud, we should either use a large 

Galois Field, e.g., GF(216) or make sure that no two nodes in the 

P2P cloud hold the same RS code. The latter approach can be done 

in RS code as the code can be indexed with a single integer value i,

which is the index of the generator matrix. This does require that 

the source peer remembers the RS code assigned to the peer node, 

which incurs additional administrative work on the source peer.

4. SECURITY IN P2P STORAGE CLOUD 

Without proper security measure, the P2P storage cloud is sus-

ceptible to the denial of service (DOS) attack. An example of such 

attack can be found in [4], in which a malicious peer pollutes the 

content in the P2P network by injecting garbage into the network. 

DOS attack in P2P cloud can be especially malicious as a single bit 

error in a single ERC coded message may propagate through ERC 

decoding and pollute all data stored in the P2P cloud. For non ERC 

and RS coded fragment, we may use well known hash (e.g., SHA-1) 

and signature (e.g., RSA) approach to guard the integrity of the 

content. The user may simply publish his public key, and sign every 

coded fragments originated from the user with the user’s private 

key. Whenever a coded fragment is received by a certain peer, the 

signature is verified by the recipient. If the signature does not 

match, the recipient will throw away the corrupted fragment and 

report the sender as malicious to a central authority.  

The guard against DOS attack for RLC coded fragment is trick-

ier. The idea is to use homomorphic hashing and homomorphic 

signature scheme[5][6]. Homomorphic hash function is linear and is 

computationally infeasible to find collisions. The linear property 

will allow us to compute the signature of a linear combination of 

the input messages given the original signatures of the input, and 

allow us to check whether a message has been altered, hence allow 

the mixing of the coded fragments in equ (6). However, homomor-

phic signature scheme works only on large Galois Field, e.g., with 

the order of the field q being a prime about 170bits long[6]. This 

greatly increases computational complexity in the RLC encoding 

and decoding. Moreover, the computation of the homomorphic 

hashing, the calculation and verification of the signature is also 

much computational intensive. Overall, to ensure secured data dis-

tribution, RLC is currently two-orders of magnitude [6] or three-

orders of magnitude ([5], throughput 160kbps) slower than RS code 

(throughput 80Mbps). The lack of more efficient homomorphic 

hashing may hamper the adoption of RLC in real P2P applications.  

5. P2P STORAGE CLOUD WITH SERVER BACKUP 
In commercial P2P deployment, it is not uncommon for the P2P 

storage cloud to be backed by a reliable server. One example is the 
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on demand movie viewing application shown in Figure 1. In this 

case, the server holds a complete copy of the movie. The P2P cloud 

is used as a supplement to aide the server in delivering the movie. 

With the existence of a reliable backup server, the data in the P2P 

cloud is always reliable. However, the server does incur cost 

(mainly in term of bandwidth) to serve the peer if the data can not 

be found in the P2P cloud. We assume that the P2P cloud consists 

of one million users. And each peer when available, stream a high 

definition movie at 7Mbps (WMV HD bitrate). We assume that all 

messages in the P2P cloud will be distributed with a replication 

ratio r=2. Whenever a message can not be decoded because there 

are insufficient number of coded fragments in the P2P cloud, the 

server will step in and serve the extra coded messages. We calculate 

the probability distribution of the server load (detailed in Appendix 

I) and calculate the bandwidth cost of the server by the 95th percen-

tile rule1, assuming the billing rate is 50$ per month per Mbps. We 

show the server cost (in million dollars per month, in the vertical 

axis) at different peer reliability rate (the horizontal axis) in Figure 

4.

We compare six approaches:  

a) Non ERC, store entire messages to r (2) peers. 

b) Non ERC, split message into k=64 fragments, then store 

the fragments to r⋅ k (128) peers. 

c) RS code, split into k=16 fragments, and store the fragments 

into r⋅ k (32) peers.

d) Same as c), except k=64.

e), f) Same as c) and d), but use RLC.

We observe that the use of ERC greatly reduces the bandwidth 

cost of the server. The cost saving is minor when the peer reliability 

is poor (r⋅p<0.5), as there are insufficient numbers of coded frag-

ments in the P2P cloud, and the peers have to go to the server for 

the missing fragments anyway. However, the cost saving becomes 

significant when the peer reliability increases. The use of ERC 

makes sure that the P2P cloud does not suffer from the coupon col-

lector’s problem, and the server is only consulted occasionally as a 

last resource.

We also observe from Figure 4 that the performance of the RLC 

and RS code is similar. Again, splitting messages into more frag-

ments helps to further reduce the server cost at the expense of more 

complicated system design and content retrieval protocol.

APPENDIX I. MATH OF RELIABILITY ANALYSIS 
Without using ERC, if the original messages is stored onto r

peers, the reliability of the message is pr.

Analyzing the reliability of ERC contains two parts. First, as-

sume that there are l peers in the cluster, the probability pa(m,l) that 

there are exactly m peers available can be calculated via binomial 

distribution:

( )( ,  ) 1
l mm

a

l
p m l p p

m

−= −  (7) 

Second, we calculate the probability pr(j,m) that the generator 

matrix is of rank j after receiving m coded fragments. For RS code 

with no duplicate fragments (recall RS code may be identified with 

                                                          
1 95th percentile is a billing mode used by most ISPs. To calculate 

the billing traffic rate, the ISP measures the load of the server every 

five minutes, 24 hours a day, every day of the month. The collec-

tions of five minute load of the server (called samples) are sorted. 

The ISP ignores the highest 5% of the load, and the value of the 

next highest load sample becomes the 95th percentile value at which 

you will be billed.  

index i, managing the code and avoid code duplication is relative 

easier), then m coded fragments result in a generator matrix with 

rank min(m,k). If there are possibly duplicated RS codes, then the 

probability pr (j,m) that the generator matrix is of rank j after re-

ceiving m code is: 
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− +− ⋅ + =
(8)

Note that splitting a message into k fragments and storing the 

fragments into the P2P store without ERC can be considered as 

using a RS code with q=k. Similarly, for RLC codes, we can recur-

sively calculate the probability pr (j,m) as: 
1

1 1
( 1,  m-1) 1 ( ,  m-1)

( ,  m)

1
( 1,  m-1) ( ,  m-1)

k j k j

r r

r

r r

p j p j j k
q q

p j

q
p k p k j k

q

− + −

− ⋅ − + ⋅ <
=

−− ⋅ + =

 (9) 

Combing (7)-(9), we can calculate the probability ps(j) which 

records the probability that there are j linearly independent coded 

fragment in the P2P network as: 

1

(0, ) 0

( )
( , ) ( , ) 0

a

l
s

a r

m

p l j

p j
p m l p j m j

=

=
=

⋅ >
. (10) 

The probability of data availability is simple the probability ps

(k). To calculate a desired replication ratio for a certain failure rate 

f, we increase the replication ratio r untill the available probability 

is larger than 1-f.

In the analysis of the P2P cloud backed by the server, we use 

the ps (j) to find the number of fragments that needs to be served by 

the server. The server load vector is: 

[ ]( ) ( 1) (0)store store storep k p k p− , (11) 

where the ith element of load vector is the probability that the 

server needs to serve i coded fragments to the peer. Convolution of 

the server load vector will lead to the probability distribution of the 

server load, which can then be used to calculate the server cost.   
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