
PIPELINED BLOCK-SERIAL DECODER ARCHITECTURE FOR
STRUCTURED LDPC CODES

Tejas Bhatt, Vishwas Sundaramurthy, Victor Stolpman and Dennis McCain
Nokia Research Center, Irving, TX, USA

{tejas.bhatt, vishwas.sundaramurthy, victor.stolpman, dennis.mccain}@nokia.com

ABSTRACT

We present a pipelined block-serial decoder architecture for
structured LDPC Codes, implementing the layered-mode belief-
propagation. We introduce the concept of LLR-update and mirror
memory to enforce a pipelined decoding schedule. The pipelined
architecture improves the latency of the LDPC decoder by about
2x-3x and has negligible performance loss when implemented with
clever layer scheduling. We also present a low-complexity check-
node architecture suitable for block-serial processing and utilize
the properties of the min approximation to significantly reduce the
memory requirement. The proposed architecture is suitable for
mobile devices with data-rates of tens of mbps.

1. INTRODUCTION

Low-Density Parity-Check (LDPC) codes have gained a lot of
attention because of their capability to achieve near Shannon limit
performance [1]. Although, the LDPC decoding algorithm offers a
lot of parallelism, the randomness and lack of structure in LDPC
codes lead to complex interconnect and demand massive hardware
resources and memory to fully exploit parallelism [2]. This has
lead to design of structured LDPC codes that are suitable for high
throughput hardware implementation [3]-[6]. In this paper, we
present decoder architecture for irregular, partitioned codes based
on permutation matrix(IPP), where the parity-check matrix is
partitioned into non-overlapping block-columns and block-
rows(also referred to as layers or supercodes) [3], [4]. Structured
codes significantly reduce area, power and memory of the decoder
and perform close to randomly designed LDPC codes [3].
Partitioned LDPC codes have been proposed as a forward error
correction scheme in standards such as IEEE 802.11n and 802.16e,
with data-rates ranging from tens to hundreds of Mbps [5], [6].

In [3], Mansour and Shanbhag have proposed a layered-mode
belief-propagation (L-BPA [4]) schedule for partitioned LDPC
codes, where extrinsic messages are passed between the layers in
each iteration, leading to faster convergence. One bottleneck in L-
BPA is the dependency between the layers, which increases the
decoding latency, especially for serial implementation. In this
paper, we present simple modifications to L-BPA schedule that
allows pipelining between different layers and reduces the latency
by 2x-3x. By cleverly scheduling the order of layers in iteration,
we obtain the performance similar to that of layered-decoding. We
then present a block-serial architecture for pipelined L-BPA that is
scalable for throughput and hardware area. The proposed

architecture is best suited for structured LDPC codes that have
large variable-node (bit-node) degree and many layers. A reduced
complexity check-node processor architecture is developed that is
suitable for serial implementation.

2. LAYERED BELIEF PROPAGATION

Consider a (N, K) LDPC code with parity-check matrix partitioned
in to L layers and C block-columns and without loss of generality,
assume that each sub-matrix is a cyclically shifted identity matrix
of dimension S. Let, R[i] (C[j]) be the set of the positions of
columns(rows) of parity-check matrix H such that, R[i]={j|Hi,,j=1}
(C[j]={i|Hi,,j=1}). ρl denotes the degree of the check-nodes in layer

l and υc denotes the degree for the variable-nodes in block-column
c. Further, civj

[q] denotes the extrinsic message from check-node i
to variable-node j and vjci

[q] denotes the extrinsic message from
variable-node j to check-node i at qth iteration. λj and L(xj)

[q] are
soft-input and updated log-likelihood-ratio (LLR),
L(xj)

[q]=log{Pr(xj=1)/Pr(xj=0)} for bit-node j at qth iteration. Also,
define ψ(x)=-log(tanh(|x/2|))=ψ-1(x).

In L-BPA, one iteration of conventional belief-propagation is
broken into L sub-iterations and in each sub-iteration new check-
node messages are computed for one layer. An improved message
passing schedule then utilizes the updated check-node messages in
the next sub-iteration to compute check-node messages for the next
layer. The algorithm is now summarized [3], [4].

Step-1: Initialization- 0]0[=ji vc ,][ij R∈∀
Step-2: Iterative decoding, For Qq ,...,3,2,1=
Part-A-B (Horizontal/Vertical Step):
@ Each Layer (1,...,2,1,0 −= Ll)

][ij R∈∀ ,]1,...,2,1,0[−+×= SSli ,

()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= ∑ ∑

∈ ∈

−−

jij iji

q
jij

q
ji vcvcM

\][' \]'['

]1[
'''

1][
ψψ

R C

λ (1)

() () ∏ ∑
∈ ∈

−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−=

jij iji

q
jij

q
ji vcsignvcS i

\][' \]'['

]1[
'''

1][1
R C

λρ (2)

() ()][][][q
ji

q
ji

q
ji vcMvcSvc ×−= (3)

Part-C (LLR Update and Hard Decision)*:

() ∑
∈

+=
][

][][

ji

q
jij

q
j vcxL

C

λ (4)

IF () 0][>q
jxL , jx̂ =1, ELSE jx̂ =0.

*For fixed iterations, can be deferred until the last iteration.

IV ­ 2251­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

Syndrome computation (TˆHxs =) may be used after each
iteration to implement early stopping criteria. Layered-decoding
improves convergence and cuts the required decoder iterations by
half. Accumulated variable-to-check (V2C) messages are not
stored but computed at every layer leading to significant memory
reduction in two different ways [3]; (1) avoids storage of V2C
messages, saving ∑nυn memory locations; and (2) saves check-to-
variable (C2V) message memory by overwriting C2V message of
the next layer(s) to be processed by newly computed C2V
messages. Savings in C2V memory is achieved at the expense of
extra computations in each layer. This approach is attractive for the
LDPC codes with small maximum variable-node degree, but leads
to higher latency or higher hardware resources for the LDPC codes
with large degrees.

The decoder architecture proposed in [3] accesses and
processes all the sub-matrices in a layer in parallel and requires
substantial hardware resources. It is suitable only for very high
throughput applications. For mobile devices, with strict area and
power constraints, a block-serial implementation that processes
each sub-matrix serially with lesser hardware requirements is more
attractive. However, the bock-serial implementation typically
increases the decoder latency; thereby limiting the throughput.

3. PIPELINED SCHEDULE FOR L-BPA

Layered-mode belief-propagation improves performance by
passing the updated extrinsic messages between the layers within a
conventional decoding iteration. As shown in Figure 1, each layer
is processed serially and extrinsic information is updated at the end
of each layer, causing dependency between the layers. Read and
Write procedures represent memory read/write for C2V messages
and LLRs, and Process represents actual computation of extrinsic
messages. In this schedule, sub-iteration for the next layer does not
start until the completion of the Write for the current layer due to
possible overlap between the layers. Moreover, in a block-serial
implementation, the Write procedure operates on each sub-matrix
in a serial fashion, resulting in a longer latency for each sub-
iteration. This limits the throughput of L-BPA, especially for a
structured code with many layers (e.g. lower code-rate) or higher
check-node degree (e.g. higher code-rate).

Figure 1 – Schedule of Layered Belief-Propagation

Figure 2 depicts the proposed pipelined schedule, where Read
and Process part of the next layer are overlapped with the Write of
the current layer. Hence, the advantage of the layer update may not
be reflected to the adjacent layer/s. The L-BPA schedule described
in section-2 is not suitable to implement a pipeline between
interconnected layers. To enable pipelining, we propose simple
modifications to L-BPA schedule that updates LLRs after each
sub-iteration by adding the difference between new and old C2V

messages to the old LLRs. The V2C messages are computed by
subtracting old C2V messages from previously updated LLRs,
which reduces the computations in V2C messages at the expense
of a small increase in C2V memory.

Figure 2 – Schedule of Pipelined Layered-Belief Propagation

The modifications to L-BPA schedule are now summarized.
The remaining part is similar to section-2.

Step-1: ()
jjxL λ=]0[& 0]0[=ji vc

Step-2: Iterative decoding, For Qq ,...,3,2,1=
Part-A-B (Horizontal/Vertical Step):
…………

() ()()⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

∈

−−−−

jij

q
ji

lq
j

q
ji vcxLvcM

\]['

]1[
'

]1,1[
'

1][
ψψ

R

 (5)

() () ()()∏
∈

−−−− −−=
jij

q
ji

lq
j

q
ji vcxLsignvcS i

\]['

]1[
'

]1,1[
'

1][1
R

ρ (6)

() ()][][][q
ji

q
ji

q
ji vcMvcSvc ×−= (7)

() [] []1],[−−=∆ q
ji

q
ji

lq
j vcvcxL (8)

Part-C (LLR Update Step):

() () ()],[]1,1[],[lq
j

lq
j

lq
j xLxLxL ∆+= −− (9)

For clarity, bit-node LLRs are additionally indexed with the
layer (l), although it is transparent in actual implementation. An
extra subtract operation is required at the check-node-processor
(CNP) to compute adjustment to LLRs (∆L(xj)). The schedule
allows us to overlap the processing of different layers; thereby
reducing the overall decoding latency.

4. PIPELINED BLOCK-SERIAL ARCHITECTURE

In this section we develop a pipelined block-serial architecture
based on the modified decoder schedule. Each sub-matrix in a
parity-check matrix is treated as a block within which all the
involved check-nodes are processed in parallel using S functional
units. Alternatively, the decoder may support only F (≤S) parallel
functional units. In order to reduce the latency of layered decoding,
a pipeline is enforced between the layers and over full parity-check
matrix. The Read for the next layer begins as soon as the Read for
current layer is completed; thereby avoiding the latency of the
memory Write of each layer. Different computations of decoding
(Process) are partitioned in one or more stages of the pipeline. The
Read, Process and Write procedures are carried out simultaneously
and span over one or more layers. Memory contention between
Read and Write procedures can be avoided by changing the order
of sub-matrix Read/Write within a layer. Since Read and Write
may happen simultaneously, dual-port memories are required.

IV ­ 226

Figure 3 – Pipelined Block-Serial Architecture

Figure 3 shows the data flow for improved pipelined
architecture. CNP computes adjustment on bit-node LLRs and at
the end of each sub-iteration, the LLRs are updated using the
available LLR-updates. A second Read is required to fetch the
previously updated LLR value. To facilitate this, a mirror LLR
memory is implemented that keeps the copy of LLRs, increasing
the overall decoder memory requirement by N soft-words.
However, the new architecture reduces the decoding latency by
more than half. Both original and mirror LLR memories are
initialized with soft inputs and C2V memory is initialized with
zeros. The permuter implements message routing network and
routes the LLRs to the correct CNP. For the LDPC codes designed
with cyclically shifted identity matrix, the permuter can be
implemented efficiently with staged multiplexers (MUX). The
stages of the permuter can be pipelined, marginally increasing the
depth of the pipeline. De-permuter implements inverse permutation
on the LLR adjustments (∆L(xj)).

4.1. Serial Check Node Processor Architecture

CNP involves logarithm and tan-h operations and is
computationally the most complex part of the decoder. Operation
ψ(x) is commonly implemented using a look-up table (LUT) or
well-known low-complexity min approximation. The performance
of min algorithm can be improved by scaling the V2C messages
[7]. The min approximation yields,

()),min(*)(*)()(ψ)ψ(ψ
-1 yxysignxsignyx ≈+ (10)

In block-serial processing, one input enters one of the S
parallel CNP and one output per CNP is written back in a single
clock. This knowledge is utilized to employ accumulate and
subtract strategy to reduce the total number of computations from
ρl×(ρl-1) to 2ρl and obtain simplified CNP implementation [8].
Ignoring sign manipulation, the CNP update can be re-written as,

()()∑
∈

−− −=
][

]1[]1[
ψ

ij

q
ji

q
j vcxLacc

R

 (11)

() ()()[]]1[]1[1][
ψ-ψ

−−− −= q
ji

q
j

q
ji vcxLaccvcM (12)

Figure 4 illustrates serial CNP architecture. Sign computation
can be efficiently implemented using X-ORs. A FIFO of length

ρmax + 2 is required to retain and delay ψ(x) values. One advantage
of the serial CNP architecture is that the number of processing
units (ψ(x), adder etc.) remains constant for any check-node
degree, allowing efficient hardware layout and usage.

ψ(x)

(x)ψ
1−

Figure 4 – CNP Architecture for Block-Serial Implementation

Simplification in min approximation can be obtained by
observing that the magnitude of a C2V message is either minimum
(MIN) or 2nd minimum (MIN2) value of the inputs. Hence,

()()]1[
'

]1[
'1]['

minarg −− −
∈

= q
ji

q
j vcxL

iRj
k (13)

()]1[]1[

11

−− −= q
ki

q
k vcxLMIN (14)

()() 1
]1[

'
]1[

' \][',min2 kiRjvcxLMIN q
ji

q
j ∈−= −− (15)

() 2][

1
MINvcM q

ki = , () 1
][, kjMINvcM q

ji ≠∀= (16)

To enforce and maintain consistency in the pipeline for min
approximation, MIN and MIN2 must be computed in a single pass,
since new value enters the CNP at every clock. Figure 5 shows the
proposed implementation strategy for the CNP employing min
approximation. MIN and MIN2 values of the inputs are computed
in parallel using 2 comparators, a 2x1 MUX and a 4x1 MUX. New
C2V messages are computed using the index of the MIN, sign
vector and a compare-select unit, eliminating the need for FIFO.
Size of the extra comparator is ceil(log2(ρmax)) bits.

V2C Index

C2V

Output

Compare

Compare

Index

(MIN)

F1
MIN

Compute

Appropriate

C2V

Message

4x1

MUX

F2

2x1

MUX

MIN

MIN2

MIN

Index (MIN)

Sign

Computation
Sign(V2C) Sign Vector

MAGNITUDE

SIGN

V2C

Input

M(V2C)

MIN

MIN2

M(V2C)

M(V2C)
MIN2

Figure 5 – Low Complexity CNP (Min-Sum Core)

4.2. Memory Savings for Min-Sum Implementation

We use dual-port RAMs for C2V and LLR memories. With well-
balanced pipeline stages and clever partitioning, single-port RAMs
can be used for C2V memory. The total memory requirements of

IV ­ 227

the decoder, including the mirror memory, is b(2N + LS ρmax) bits,
where b is word-length of C2V messages. For min approximation
C2V memory can further be conserved by storing sign and
magnitude separately. Since the magnitude of C2V message is
either MIN or MIN2 of the input V2C messages, overall memory
requirement can be reduced significantly by storing MIN, MIN2,
sign of different C2V messages and the index of MIN value. For
each check-node the decoder requires; 2(b-1) bits to store
magnitudes, ρmax bits to store sign and ceil(log2(ρmax)) bits to store
index of MIN value. The overall savings in C2V memory is,

() ⎡ ⎤()
%100

)(2log12
1

max

maxmax
2 ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

×
++−

−=
ρ

ρρ
b

b
S VC

 (17)

Assuming 8-bit precision, about 60% savings in C2V memory
can be achieved for rate ½ code with maximum check-node degree
of 8 and about 75% savings can be achieved for rate 5/6 code with
maximum check-node degree of 20. Extra logic may be needed to
convert C2V messages from sign-magnitude to 2’s complement
format.

4.3. Latency Improvement for Pipelined Architecture

Let us assume that permuter, V2C computation, CNP, de-permuter
and LLR-update operations shown in Figure 3 has P pipeline
stages, each consuming 1-clock cycle. Then, overall latency
(clocks/iteration) of the block-serial layered LDPC decoder
without any pipeline between the layers is,

()∑
=

−+=Γ
L

l
lLBPA P

1

12ρ (18)

In order to enforce pipeline, the processing time for each layer
must be equal. For irregular LDPC codes with different check-
node degrees for different layers, pseudo computation cycles are
inserted to balance the pipeline. They do not alter the end result,
but increase the decoding latency. The LDPC codes in [3]-[6]
allow efficient pipelining as the check-node degrees of various
layers are almost same. The latency of the pipelined decoder for
the LDPC code with maximum check-node degree ρmax is,

1max −+×=Γ PLpipeline ρ (19)

It should be noted that in the original L-BPA schedule, the
CNP directly computes LLR instead of LLR adjustment and needs
1 less decoder stage than the pipelined schedule. Neglecting the
differences in the decoder stages with and without pipeline mode,
the improvement in latency is,

() ()11max −×+−×=Γ LPLimproved ρ (20)

For example, for a rate ½ LDPC code with base-matrix
dimension (12, 24) and maximum check-node degree of 7, the
improvement in latency with 14 decoder stages is roughly 3x.
Considering small pipeline inefficiencies, the proposed pipelined
architecture offers 2x-3x improvement in decoder throughput.

4.4. Performance of Pipeline Layered Decoding

Figure 6 compare the block error rate of pipelined and original L-
BPA for R-1/2 (N=1536) and R-5/6 (N=2400) LDPC codes
specified in [5]. The decoder implements layered-min-sum (LMS)

algorithm with 10 decoding iterations and has 14-pipeline stages.
Pipelined decoding with an alternate schedule is also shown in the
same figure, labeled Pipeline-2, where the layers are processed in
other than linear order. The pipelined schedule alters the message
passing mechanism of the L-BPA as the adjacent layer(s) may not
benefit from the advantage of the layered update. However, the
performance loss incurred by the pipelined decoder is negligible
and as shown in the figure a pipelined decoder with effective
scheduling performs as good as the L-BPA.

1 1.5 2 2.5 3 3.5 4 4.5
10

4

10
3

10
2

10
1

10
0

EbN0 (dB)

B
LE

R

LMS
LMS Pipeline 1
LMS Pipeline 2
LMS
LMS Pipeline 2

R 1/2 R 5/6

Figure 6 – Performance of Pipelined Layered-Min-Sum

5. CONCLUSION

Pipelined block-serial decoder architecture is presented for
structured LDPC codes. The pipelined architecture improves the
latency of the layered decoder by 2x-3x, with a small increase in
memory and hardware requirements. Simplified CNP architecture
is developed that is suitable for block-serial implementation and
the overall decoder implementation requires significantly less
hardware resources than parallel layer implementation. We also
show that the overall check-node memory requirement of the
decoder can be reduced by about 50%-75% for min-sum algorithm.

6. REFERENCES

[1] D.J.C. Mackay and R.M. Neal, “Near Shannon Limit Performance of
Low Density Parity Check Codes”, IEEE Electron. Lett., vol. 32, no.
18, pp. 1645-1646, Aug 1996.

[2] C. Howland and A. Blanksby, “Parallel decoding architectures for
low density parity check codes”, IEEE Int. Symp. on Circuits and
Systems, vol. 5, no. 2, pp. 58-60, Feb 2001.

[3] M.M. Mansour and N.R. Shanbhag, “High-Throughput LDPC
Decoders”, IEEE Trans. on VLSI Systems, vol. 11, pp. 976-996, Dec
2003.

[4] D.E. Hocevar, “A Reduced Complexity Decoder Architecture via
Layered Decoding of LDPC Codes”, in Proc., IEEE Workshop on
Signal Processing Systems(SiPS), pp. 107-112, Oct 2004.

[5] V. Stolpman et. al., “Irregular Structured LDPC Codes”, IEEE 802.16
Broadband Wireless Working Group, contribution IEEE C802.16e-
04/264, Aug 2004.

[6] IEEE WirelessMAN 802.16, “Air Interface for Fixed and Mobile
Broadband Wireless Access Systems”, P802.16e/D11, Sept 2005.

[7] J. Heo, “Analysis of Scaling Soft Information On Low-Density
Parity-Check Code”, IEEE Electron. Lett., vol. 39, no. 2, pp. 219-
221, Jan 2003.

[8] T. Bhatt et. al., “Fixed point DSP Implementation of Low-Density
Parity-Check Codes”, in Proc. of the 9th IEEE DSP Workshop, Hunt,
TX, Oct 2000.

IV ­ 228

