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ABSTRACT 

We present a pipelined block-serial decoder architecture for 
structured LDPC Codes, implementing the layered-mode belief-
propagation. We introduce the concept of LLR-update and mirror 
memory to enforce a pipelined decoding schedule. The pipelined 
architecture improves the latency of the LDPC decoder by about 
2x-3x and has negligible performance loss when implemented with 
clever layer scheduling. We also present a low-complexity check-
node architecture suitable for block-serial processing and utilize 
the properties of the min approximation to significantly reduce the 
memory requirement. The proposed architecture is suitable for 
mobile devices with data-rates of tens of mbps. 

1. INTRODUCTION 

Low-Density Parity-Check (LDPC) codes have gained a lot of 
attention because of their capability to achieve near Shannon limit 
performance [1]. Although, the LDPC decoding algorithm offers a 
lot of parallelism, the randomness and lack of structure in LDPC 
codes lead to complex interconnect and demand massive hardware 
resources and memory to fully exploit parallelism [2]. This has 
lead to design of structured LDPC codes that are suitable for high 
throughput hardware implementation [3]-[6]. In this paper, we 
present decoder architecture for irregular, partitioned codes based 
on permutation matrix(IPP), where the parity-check matrix is 
partitioned into non-overlapping block-columns and block-
rows(also referred to as layers or supercodes) [3], [4]. Structured 
codes significantly reduce area, power and memory of the decoder 
and perform close to randomly designed LDPC codes [3]. 
Partitioned LDPC codes have been proposed as a forward error 
correction scheme in standards such as IEEE 802.11n and 802.16e, 
with data-rates ranging from tens to hundreds of Mbps [5], [6]. 

In [3], Mansour and Shanbhag have proposed a layered-mode 
belief-propagation (L-BPA [4]) schedule for partitioned LDPC 
codes, where extrinsic messages are passed between the layers in 
each iteration, leading to faster convergence. One bottleneck in L-
BPA is the dependency between the layers, which increases the 
decoding latency, especially for serial implementation. In this 
paper, we present simple modifications to L-BPA schedule that 
allows pipelining between different layers and reduces the latency 
by 2x-3x. By cleverly scheduling the order of layers in iteration, 
we obtain the performance similar to that of layered-decoding. We 
then present a block-serial architecture for pipelined L-BPA that is 
scalable for throughput and hardware area. The proposed 

architecture is best suited for structured LDPC codes that have 
large variable-node (bit-node) degree and many layers. A reduced 
complexity check-node processor architecture is developed that is 
suitable for serial implementation. 

2. LAYERED BELIEF PROPAGATION 

Consider a (N, K) LDPC code with parity-check matrix partitioned 
in to L layers and C block-columns and without loss of generality, 
assume that each sub-matrix is a cyclically shifted identity matrix 
of dimension S. Let, R[i] (C[j]) be the set of the positions of 
columns(rows) of parity-check matrix H such that, R[i]={j|Hi,,j=1} 
(C[j]={i|Hi,,j=1}). ρl denotes the degree of the check-nodes in layer 

l and υc denotes the degree for the variable-nodes in block-column 
c. Further, civj

[q] denotes the extrinsic message from check-node i
to variable-node j and vjci

[q] denotes the extrinsic message from 
variable-node j to check-node i at qth iteration. λj and L(xj)

[q] are 
soft-input and updated log-likelihood-ratio (LLR), 
L(xj)

[q]=log{Pr(xj=1)/Pr(xj=0)} for bit-node j at qth iteration. Also, 
define ψ(x)=-log(tanh(|x/2|))=ψ-1(x).

In L-BPA, one iteration of conventional belief-propagation is 
broken into L sub-iterations and in each sub-iteration new check-
node messages are computed for one layer. An improved message 
passing schedule then utilizes the updated check-node messages in 
the next sub-iteration to compute check-node messages for the next 
layer. The algorithm is now summarized [3], [4]. 
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*For fixed iterations, can be deferred until the last iteration. 
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Syndrome computation ( TˆHxs = ) may be used after each 
iteration to implement early stopping criteria. Layered-decoding 
improves convergence and cuts the required decoder iterations by 
half. Accumulated variable-to-check (V2C) messages are not 
stored but computed at every layer leading to significant memory 
reduction in two different ways [3]; (1) avoids storage of V2C 
messages, saving ∑nυn memory locations; and (2) saves check-to-
variable (C2V) message memory by overwriting C2V message of 
the next layer(s) to be processed by newly computed C2V 
messages. Savings in C2V memory is achieved at the expense of 
extra computations in each layer. This approach is attractive for the 
LDPC codes with small maximum variable-node degree, but leads 
to higher latency or higher hardware resources for the LDPC codes 
with large degrees. 

The decoder architecture proposed in [3] accesses and 
processes all the sub-matrices in a layer in parallel and requires 
substantial hardware resources. It is suitable only for very high 
throughput applications. For mobile devices, with strict area and 
power constraints, a block-serial implementation that processes 
each sub-matrix serially with lesser hardware requirements is more 
attractive. However, the bock-serial implementation typically 
increases the decoder latency; thereby limiting the throughput. 

3. PIPELINED SCHEDULE FOR L-BPA 

Layered-mode belief-propagation improves performance by 
passing the updated extrinsic messages between the layers within a 
conventional decoding iteration. As shown in Figure 1, each layer 
is processed serially and extrinsic information is updated at the end 
of each layer, causing dependency between the layers. Read and 
Write procedures represent memory read/write for C2V messages 
and LLRs, and Process represents actual computation of extrinsic 
messages. In this schedule, sub-iteration for the next layer does not 
start until the completion of the Write for the current layer due to 
possible overlap between the layers. Moreover, in a block-serial 
implementation, the Write procedure operates on each sub-matrix 
in a serial fashion, resulting in a longer latency for each sub-
iteration. This limits the throughput of L-BPA, especially for a 
structured code with many layers (e.g. lower code-rate) or higher 
check-node degree (e.g. higher code-rate). 

Figure 1 – Schedule of Layered Belief-Propagation

Figure 2 depicts the proposed pipelined schedule, where Read
and Process part of the next layer are overlapped with the Write of 
the current layer. Hence, the advantage of the layer update may not 
be reflected to the adjacent layer/s. The L-BPA schedule described 
in section-2 is not suitable to implement a pipeline between 
interconnected layers. To enable pipelining, we propose simple 
modifications to L-BPA schedule that updates LLRs after each 
sub-iteration by adding the difference between new and old C2V 

messages to the old LLRs. The V2C messages are computed by 
subtracting old C2V messages from previously updated LLRs, 
which reduces the computations in V2C messages at the expense 
of a small increase in C2V memory. 

Figure 2 – Schedule of Pipelined Layered-Belief Propagation 

The modifications to L-BPA schedule are now summarized. 
The remaining part is similar to section-2. 
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For clarity, bit-node LLRs are additionally indexed with the 
layer (l), although it is transparent in actual implementation. An 
extra subtract operation is required at the check-node-processor 
(CNP) to compute adjustment to LLRs (∆L(xj)). The schedule 
allows us to overlap the processing of different layers; thereby 
reducing the overall decoding latency. 

4. PIPELINED BLOCK-SERIAL ARCHITECTURE 

In this section we develop a pipelined block-serial architecture 
based on the modified decoder schedule. Each sub-matrix in a 
parity-check matrix is treated as a block within which all the 
involved check-nodes are processed in parallel using S functional 
units. Alternatively, the decoder may support only F (≤S) parallel 
functional units. In order to reduce the latency of layered decoding, 
a pipeline is enforced between the layers and over full parity-check 
matrix. The Read for the next layer begins as soon as the Read for 
current layer is completed; thereby avoiding the latency of the 
memory Write of each layer. Different computations of decoding 
(Process) are partitioned in one or more stages of the pipeline. The 
Read, Process and Write procedures are carried out simultaneously 
and span over one or more layers. Memory contention between 
Read and Write procedures can be avoided by changing the order 
of sub-matrix Read/Write within a layer. Since Read and Write
may happen simultaneously, dual-port memories are required. 
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Figure 3 – Pipelined Block-Serial Architecture 

Figure 3 shows the data flow for improved pipelined 
architecture. CNP computes adjustment on bit-node LLRs and at 
the end of each sub-iteration, the LLRs are updated using the 
available LLR-updates. A second Read is required to fetch the 
previously updated LLR value. To facilitate this, a mirror LLR 
memory is implemented that keeps the copy of LLRs, increasing 
the overall decoder memory requirement by N soft-words. 
However, the new architecture reduces the decoding latency by 
more than half. Both original and mirror LLR memories are 
initialized with soft inputs and C2V memory is initialized with 
zeros. The permuter implements message routing network and 
routes the LLRs to the correct CNP. For the LDPC codes designed 
with cyclically shifted identity matrix, the permuter can be 
implemented efficiently with staged multiplexers (MUX). The 
stages of the permuter can be pipelined, marginally increasing the 
depth of the pipeline. De-permuter implements inverse permutation 
on the LLR adjustments (∆L(xj)).

4.1. Serial Check Node Processor Architecture 

CNP involves logarithm and tan-h operations and is 
computationally the most complex part of the decoder. Operation 
ψ(x) is commonly implemented using a look-up table (LUT) or 
well-known low-complexity min approximation. The performance 
of min algorithm can be improved by scaling the V2C messages 
[7]. The min approximation yields, 

( ) ),min(*)(*)()(ψ)ψ(ψ
-1 yxysignxsignyx ≈+    (10) 

In block-serial processing, one input enters one of the S
parallel CNP and one output per CNP is written back in a single 
clock. This knowledge is utilized to employ accumulate and 
subtract strategy to reduce the total number of computations from 
ρl×(ρl-1) to 2ρl and obtain simplified CNP implementation [8]. 
Ignoring sign manipulation, the CNP update can be re-written as, 
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Figure 4 illustrates serial CNP architecture. Sign computation 
can be efficiently implemented using X-ORs. A FIFO of length 

ρmax + 2 is required to retain and delay ψ(x) values. One advantage 
of the serial CNP architecture is that the number of processing 
units (ψ(x), adder etc.) remains constant for any check-node 
degree, allowing efficient hardware layout and usage. 

ψ(x)

(x)ψ
1−

Figure 4 – CNP Architecture for Block-Serial Implementation 

Simplification in min approximation can be obtained by 
observing that the magnitude of a C2V message is either minimum 
(MIN) or 2nd minimum (MIN2) value of the inputs. Hence,  
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To enforce and maintain consistency in the pipeline for min
approximation, MIN and MIN2 must be computed in a single pass, 
since new value enters the CNP at every clock.  Figure 5 shows the 
proposed implementation strategy for the CNP employing min
approximation. MIN and MIN2 values of the inputs are computed 
in parallel using 2 comparators, a 2x1 MUX and a 4x1 MUX. New 
C2V messages are computed using the index of the MIN, sign 
vector and a compare-select unit, eliminating the need for FIFO. 
Size of the extra comparator is ceil(log2(ρmax)) bits. 
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Figure 5 – Low Complexity CNP (Min-Sum Core) 

4.2. Memory Savings for Min-Sum Implementation

We use dual-port RAMs for C2V and LLR memories. With well-
balanced pipeline stages and clever partitioning, single-port RAMs 
can be used for C2V memory. The total memory requirements of 
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the decoder, including the mirror memory, is b(2N + LS ρmax) bits, 
where b is word-length of C2V messages. For min approximation 
C2V memory can further be conserved by storing sign and 
magnitude separately. Since the magnitude of C2V message is 
either MIN or MIN2 of the input V2C messages, overall memory 
requirement can be reduced significantly by storing MIN, MIN2, 
sign of different C2V messages and the index of MIN value. For 
each check-node the decoder requires; 2(b-1) bits to store 
magnitudes, ρmax bits to store sign and ceil(log2(ρmax)) bits to store 
index of MIN value. The overall savings in C2V memory is, 
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Assuming 8-bit precision, about 60% savings in C2V memory 
can be achieved for rate ½ code with maximum check-node degree 
of 8 and about 75% savings can be achieved for rate 5/6 code with 
maximum check-node degree of 20. Extra logic may be needed to 
convert C2V messages from sign-magnitude to 2’s complement 
format. 

4.3. Latency Improvement for Pipelined Architecture

Let us assume that permuter, V2C computation, CNP, de-permuter 
and LLR-update operations shown in Figure 3 has P pipeline 
stages, each consuming 1-clock cycle. Then, overall latency 
(clocks/iteration) of the block-serial layered LDPC decoder 
without any pipeline between the layers is, 
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In order to enforce pipeline, the processing time for each layer 
must be equal. For irregular LDPC codes with different check-
node degrees for different layers, pseudo computation cycles are 
inserted to balance the pipeline. They do not alter the end result, 
but increase the decoding latency. The LDPC codes in [3]-[6] 
allow efficient pipelining as the check-node degrees of various 
layers are almost same. The latency of the pipelined decoder for 
the LDPC code with maximum check-node degree ρmax is, 

1max −+×=Γ PLpipeline ρ         (19) 

It should be noted that in the original L-BPA schedule, the 
CNP directly computes LLR instead of LLR adjustment and needs 
1 less decoder stage than the pipelined schedule. Neglecting the 
differences in the decoder stages with and without pipeline mode, 
the improvement in latency is, 

( ) ( )11max −×+−×=Γ LPLimproved ρ        (20) 

For example, for a rate ½ LDPC code with base-matrix 
dimension (12, 24) and maximum check-node degree of 7, the 
improvement in latency with 14 decoder stages is roughly 3x. 
Considering small pipeline inefficiencies, the proposed pipelined 
architecture offers 2x-3x improvement in decoder throughput. 

4.4. Performance of Pipeline Layered Decoding 

Figure 6 compare the block error rate of pipelined and original L-
BPA for R-1/2 (N=1536) and R-5/6 (N=2400) LDPC codes 
specified in [5]. The decoder implements layered-min-sum (LMS) 

algorithm with 10 decoding iterations and has 14-pipeline stages. 
Pipelined decoding with an alternate schedule is also shown in the 
same figure, labeled Pipeline-2, where the layers are processed in 
other than linear order. The pipelined schedule alters the message 
passing mechanism of the L-BPA as the adjacent layer(s) may not 
benefit from the advantage of the layered update. However, the 
performance loss incurred by the pipelined decoder is negligible 
and as shown in the figure a pipelined decoder with effective 
scheduling performs as good as the L-BPA.
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Figure 6 – Performance of Pipelined Layered-Min-Sum

5. CONCLUSION 

Pipelined block-serial decoder architecture is presented for 
structured LDPC codes. The pipelined architecture improves the 
latency of the layered decoder by 2x-3x, with a small increase in 
memory and hardware requirements. Simplified CNP architecture 
is developed that is suitable for block-serial implementation and 
the overall decoder implementation requires significantly less 
hardware resources than parallel layer implementation. We also 
show that the overall check-node memory requirement of the 
decoder can be reduced by about 50%-75% for min-sum algorithm. 
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