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ABSTRACT

The performance of a uniform-threshhold scalar quantizer in Wyner-
Ziv coding is investigated in this paper. To derive analytical expres-
sions we assume the abstract correlation channel from the side infor-
mation to the source to be encoded is memoryless, additive Lapla-
cian. Furthermore, in order to focus our attention on the perfor-
mance of the quantizer, the Wyner-Ziv coding scheme is assumed
to encode the quantizer output by using perfect Slepian-Wolf cod-
ing. Analytical expressions for the operational rate-distortion func-
tion are obtained for this case. By evaluating these analytical ex-
pressions, we show that scalar quantization with a mid-tread uni-
form threshhold quantizer, followed by perfect Slepian Wolf coding
achieves performance which is close to the theoretical Wyner-Ziv
rate-distortion bound at low rates.

1. INTRODUCTION

In this paper we describe a scalar quantizer Q defined on the real line
by two sequences of real numbers: {xk}∞k=−∞ and {yk}∞k=−∞. To
quantize a real number x, the quantizer Q simply finds an index
k∗ = Q(x) such that xk∗ < x ≤ xk∗+1, and reconstructs x as
yk∗ . For this reason, {xk} are called threshold levels, and {yk} are
called reconstruction levels. In a special case when there exists a
constant ∆ > 0 such that xk+1 − xk = ∆ for all k, the quantizer
Q is called a uniform threshold quantizer. If in addition xk = k∆,
Q is called a uniform threshold symmetric quantizer.

If Q is applied to a random variable X, its performance can be
analyzed by the rate

RQ
∆
=H(Q(X)), (1)

where H(Q(X)) denotes the entropy of the random variable Q(X),
and the average distortion DQ incurred in the quantization process.
In most practical applications, the distortion of interest is the mean
square error, i.e.,

DQ
∆
=E(X − Q−1(Q(X)))2, (2)

where the inverse mapping Q−1(k)
∆
=yk for any integer k, and E

stands for standard expectation. Throughout this paper DQ refers to
mean square error unless specified otherwise.

The rate-distortion performance of uniform threshold quantiz-
ers for a single source has been studied extensively in the literature
of traditional lossy source coding. In this paper we focus our discus-
sion on memoryless Laplacian sources, the choice of which is justi-
fied by the fact that these sources are often used to model innovation
processes in applications like audio, image, and video compression.
For memoryless Laplacian sources, uniform threshold quantizers
were shown in [3] to satisfy the necessary conditions for optimal-
ity. In the same paper, Berger also provided parametric equations to

analytically calculate RQ and DQ of a uniform threshold symmet-
ric quantizer Q for a zero-mean Laplacian source. Farvardin took a
numerical approach [2] and showed that for a zero-mean Laplacian
source, at rate 1 bit per sample the distortion yielded by an optimum
uniform threshold quantizer is within 0.86dB of the theoretical limit
given by the distortion-rate function of the same Laplacian source.
Note here that the optimum uniform threshold quantizer considered
in [2] is not symmetric. In fact, if we are constrained to use uniform
threshold symmetric quantizers, the gap at rate 1 bit per sample be-
comes 3.61dB [1], and these quantizers cannot work under 1 bit per
sample [2, 3]. In this paper, we derive parametric expressions for
RQ and DQ when Q is a uniform threshold quantizer but not sym-
metric. These expressions are provided in Section 2. Using these
expressions we can calculate DQ for all rates RQ and with better
precision than the numerical approach [2].

Beyond traditional lossy source coding, more specifically, in
Wyner-Ziv source coding [5] (also called lossy source coding with
side information at the decoder), very little is known about the per-
formance of uniform threshold quantizer. Contrary to this fact, in
applications like distributed source coding or asymmetric video com-
pression where Wyner-Ziv source coding is preferred over tradi-
tional lossy source coding because it promises a low-complexity en-
coder, uniform threshold quantizer is often a natural choice due to
its simplicity and low computational complexity. In view of these,
Section 3 of this paper is thus devoted to analyzing the performance
of uniform threshold quantizers in Wyner-Ziv coding. In particular,
we consider the following memoryless model. Let W , and N de-
note two independent Laplacian random variables, and X be another
random variable such that

X = W + N. (3)

Let {(Xi, Wi, Ni)}∞i=1 be a sequence of independent copies of (X,
W, N). Assume that {Wi}∞i=1 is available only at the decoder as
the side information. Wyner and Ziv showed that the rate-distortion
function RWZ

X|Y (D) of the source {Xi}∞i=1 given the side informa-
tion {Wi}∞i=1 is

RWZ
X|W (D)

∆
= inf

U
[I(X; U) − I(W ;U)] (4)

where the infimum is taken over the set of all random variables U
taking values in an arbitrary finite set U such that U → X → W is
a Markov chain, and there exists a function f : U × R → R̂ such
that

E(X − f(U, W ))2 ≤ D, (5)

where R denotes the set of all real numbers and the R̂ denotes
the reproduction alphabet. In order to focus our attention on the
performance of the quantizer Q, we assume that the quantizer out-
put {Q(Xi)}∞i=1 will be encoded and decoded by using a perfect
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Slepian-Wolf code [6]. Hence the rate RQ is given by

RQ
∆
=H(Q(X)|W ),

where H(Q(X)|W ) denotes the conditional entropy of Q(X) given
W . The distortion DQ can be calculated by

DQ = E(X − Q−1(Q(X)|W ))2,

where it follows from (5) that the inverse mapping Q−1 depends
on W , i.e., for each realization w of W , the quantizer Q might
have a different sequence of reconstruction levels {yk}. In this pa-
per for any realization w of W , we derive analytical expressions
of H(Q(X)|w) and E(X − Q−1(Q(X)|w))2 by investigating the
performance of uniform threshold quantizer for a Laplacian source
with non-zero mean. We then evaluate these expressions to deter-
mine RQ and DQ for a memoryless Laplacian side information
coupled with a memoryless, additive Laplacian correlation channel.
Our results show that at rate 0.5 bits per sample, the distortion given
by uniform quantization followed by perfect Slepian-Wolf coding is
within 1dB of the theoretical limit from (4).

2. UNIFORM QUANTIZATION FOR LOSSY SOURCE
CODING OF A LAPLACIAN SOURCE

Consider the one-dimensional quantization of a discrete-time mem-
oryless zero-mean stationary process (source) {Xi}∞i=1 with marginal
pdf p(x) = λ

2
e−λ|x| and variance σ2

X = E[X2
1 ] = 2

λ2 . Con-
sider a uniform threshold quantizer Q given by {xk}k and {yk}k.
Throughout this section we drop the subscript Q in RQ and DQ de-
fined in (1) and (2), respectively. From (1) and (2) we see that an
optimum quantizer Q minimizes

D =
�

k

� xk+1

xk

p(x)(yk − x)2dx. (6)

subject to the constraint R = −�
k

pk log2 pk, where

pk =

� xk+1

xk

λ

2
e−λ|x|dx. (7)

For a given set of threshhold levels, the reconstruction levels
that minimize mean-squared error are given by:

yk =
1

pk

� xk+1

xk

xp(x)dx. (8)

As shown in [3], necessary conditions for optimal scalar quan-
tizers which minimize J = R + ΛD are given by the following set
of nonlinear equations:

pk+1 = pk exp [Λ(yk+1 − yk)(yk+1 + yk − 2xk)], (9)

Further, [3] shows that for a Laplacian source, uniform threshhold
quantizers (xk = k∆+ε) satisfy (9). For symmetric uniform thresh-
hold quantizers (ε = 0), the entropy rate and quantizer distortion are
given by the following set of parametric equations:

R = 1 + (1 − θ)−1[−θ log2 θ − (1 − θ) log2(1 − θ)]

= 1 + (1 − θ)−1H(θ), (10)

D = λ−2[1 − θ
ln2 θ

(1 − θ)2
] (11)

where H(·) denotes the binary entropy function and θ = e−λ∆.

Noting that a symmetric uniform threshhold quantizer with an
even number of levels can never yield an entropy rate below R =
1 bit per symbol, we derive the rate and distortion expressions for
uniform threshhold quantizers with xk = ∆k + ε.

For k ≥ 0 we have:

pk =

� xk+1

xk

λ

2
e−λ|x|dx = e−λεe−λk∆[1 − e−λ∆]/2. (12)

yk =
1

pk

� xk+1

xk

x
λ

2
e−λ|x|dx

= ε +
1

λ
+ k∆ − ∆

e−λ∆

1 − e−λ∆
. (13)

It is clear from symmetry that y−1 = 0. For p−1 we have:

p−1 =
λ

2
[

� 0

−∆+ε

eλxdx +

� ε

0

e−λxdx]

=
2 − eλ(ε−∆) − e−λε

2
. (14)

Then quantizer distortion is given by:

D =
2

λ2
−
�

k

yk
2pk. (15)

For the case where ε = 0.5∆, it can be shown that (12–15)
yield:

R = H(
√

θ) +
√

θ(1 − log2 (1 − θ)) − 3
√

θ
log2 θ

1 − θ
, (16)

D = λ−2[2 −
√

θ[(1 − 0.5 ln θ)2 + θ
ln2 θ

(1 − θ)2
]]. (17)

Due to page limit, detailed derivations of (16–17) and the other re-
sults in the next section are omitted.

One can verify that there is a perfect correspondence between
analytical quantizer performance (16, 17) and numerical ones. Fur-
ther, the performance of this quantizer is very close to the rate-
distortion performance bound for low rates as described in [2]—
Table 1 compares SNR (signal-to-noise ratio) values (SNR =

10 log10
σ2

x

D
) for uniform scalar quantization with the theoretical

rate-distortion bound at various bit-rates. In the next section, we
will derive rate-distortion performance expressions for the case of
Wyner-Ziv coding with a Laplacian channel model, with the intent
of characterizing the corresponding performance gap.

R (bps) R(D) Analytical Performance
1 6.62 5.767
2 12.66 11.326
3 18.68 17.208

Table 1. Comparison of the analytical SNR (in dB) of a uniform
threshhold scalar quantizer versus theoretical source-coding bound
for a Laplacian source.

3. UNIFORM QUANTIZATION IN WYNER-ZIV CODING

In this section we derive expressions for the entropy-rate and quan-
tizer distortion of a scalar quantizer when used for Wyner-Ziv cod-
ing, where the correlation channel from the side information to the
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source is given by (3). Assume that the side-information W has dis-
tribution p(w) = α

2
e−α|w−w0|, and the channel noise N is indepen-

dent of W with distribution p(n) = λ

2
e−λ|n|. As discussed above

in the introduction, we assume a Wyner-Ziv coding scheme that en-
codes the quantizer output by using perfect Slepian-Wolf coding. To
this end we will first derive performance expressions for quantiza-
tion of a non-zero mean Laplacian source with a symmetric uniform
threshhold quantizer.

3.1. Performance of Uniform Threshold Quantizer for Lapla-
cian Source with Non-Zero Mean

We investigate the performance of a symmetric uniform threshold
quantizer with intervals xi = i∆ for a Laplacian source given by
f(x) = λ

2
e−λ|x−x0| with mean x0 = ε∆, where 0 ≤ ε < 1.

We have three cases here: i ≥ 1, i ≤ −1 and i = 0. For the
case of i ≥ 1 we can write:

pi =

� xi+1

xi

λ

2
e−λ(x−x0)dx =

eλx0e−λi∆[1 − e−λ∆]

2
, (18)

yi =
1

pi

� xi+1

xi

λ

2
e−λ(x−x0)dx = ∆i +

1

λ
− ∆

e−λ∆

1 − e−λ∆
. (19)

For the case of i ≤ −1 we have:

pi =
e−λx0eλi∆[eλ∆ − 1]

2
, and (20)

yi = ∆i − 1

λ
+ ∆

eλ∆

eλ∆ − 1
. (21)

For the case of i = 0 we find:

p0 =

� ε∆

0

λ

2
eλ(x−ε∆)dx +

� ∆

ε∆

λ

2
e−λ(x−ε∆)dx

=
1

2
[2 − e−λε∆ − eλ(ε−1)∆], and (22)

y0 =
e−λε∆ − (λ∆ + 1)eλ(ε−1)∆ + 2λε∆

λ(2 − e−λε∆ − eλ∆(ε−1))
. (23)

The quantizer distortion is given by

Dε =
�

i

� xi+1

xi

(x − yi)
2f(x)dx

=
2

λ2
+ ∆2ε2 −

�
i

y2
i pi. (24)

Then it can be shown that

A1
∆
=

∞�
i=1

y2
i pi

=
θ−ε

2λ2
[1 + θ

ln2 θ

(1 − θ)2
− (1 − θ(1 − ln θ))2

1 − θ
], (25)

and

A3
∆
=

−1�
i=−∞

y2
i pi =

θε

2λ2
[1 + θ

ln2 θ

(1 − θ)2
]. (26)

Taking into consideration (22) and (23), A2 is given by:

A2
∆
= y2

0p0

=
[θε + (ln θ − 1)θ1−ε − 2ε ln θ]2

2λ2[2 − θε − θ1−ε]
. (27)

Thus the quantizer distortion D can be computed as follows:

Dε =
2

λ2
+ ∆2ε2 − A1 − A2 − A3. (28)

Let us compute rate Rε = −�∞
−∞ pi log2 pi. We start with

J3
∆
= −�∞

i=1 pi log2 pi:

J3 = −
∞�

i=1

eλ∆εe−λi∆[1 − e−λ∆]

2

�
λ∆ε log2 e − 1

− λi∆ log2 e + log2[1 − e−λ∆]
�

=
θ−ε

2

�
1 +

H(θ)

(1 − θ)

+ (1 − θ)[−1 + log2(1 − θ)] + εθ log2 θ
�
. (29)

Given (22) and (23), J2
∆
= − p0 log2 p0 can be written as:

J2 = −1

2
[2 − θε − θ1−ε][log2(2 − θε − θ1−ε) − 1]. (30)

Let us find J1
∆
= −�−1

i=−∞ pi log2 pi:

J1 = −
−1�

i=−∞

pi log2 pi (31)

= e−λ∆ε
�
−

−1�
i=−∞

eλi∆(eλ∆ − 1)

2
[−1 + λ∆i log2 e (32)

+ log2(e
λ∆ − 1)] + λ∆ε log2 e

−1�
−∞

eλi∆(eλ∆ − 1)

2

�

=
θε

2
[1 + (1 − θ)−1H(θ) − ε log2 θ]. (33)

3.2. Performance of Uniform Threshhold Quantizer in Wyner-
Ziv Coding

Based on the rate-distortion expressions derived above, we can now
derive expressions for the performance of uniform-threshhold scalar
quantizers used for Wyner-Ziv coding. We assume a Wyner-Ziv
coding scheme consisting of uniform scalar quantization followed
by perfect Slepian-Wolf coding. Consider the symmetric uniform
threshhold quantizer with xi = i∆, i ∈ Z considered above. As de-
scribed in the introduction, we will consider a Laplacian distributed
side information, and consider a Wyner-Ziv channel which adds in-
dependent, zero-mean Laplacian noise. In this setting the actual
value of the side information, denoted w, will ‘offset’ the mean of
the source distribution. The rate-distortion expressions for a fixed
value of the side information are given by (29–33) and (24) with
ε = w

∆
− �w

∆

�
.

Noting that p(w) = α

2
e−α|w−w0|, we see that the distribution

of ε is p(ε) =
�

i∈Z

α

2
e−α|i∆+ε∆−w0|. Thus, the average rate and

average distortion for the Wyner-Ziv case are,

RWZQ = Eε[Rε] =
�� 1

0

Rε

α

2
e−α|i∆+ε∆−w0|dε (34)

DWZQ = Eε[Dε] =
�� 1

0

Dε

α

2
e−α|i∆+ε∆−w0|dε (35)

The rate and distortion expressions for the Wyner-Ziv case can be
computed by performing the integration in (34), (35) numerically.

IV  219



3.3. Performance Evaluation

In this section, we present numerical results for the rate-distortion
performance of uniform scalar quantizers used for Wyner-Ziv cod-
ing for the model described in the introduction. We consider a zero-
mean, unit-variance Laplacian side-information for all simulations
reported here, with the channel modeled as addition of zero-mean,
independent, additive Laplacian noise with variance σ2

n = 0.1 .

R (bps) Simulated Analytical Performance
1 5.09 5.09
2 11.12 11.12
3 17.16 17.15

Table 2. Comparison of the analytical and simulated SNR (in dB).

First we verify the correctness of the rate-distortion expressions
given by (34) and (35). To this end, we simulate Wyner-Ziv cod-
ing using scalar quantization and perfect Slepian-Wolf coding, for
blocks of 105 source vectors generated for each of a range of side-
information values, governed by the considered model. Table 2

compares the rate-SNR performance (SNR
∆
=10 log10

σ2
n

D
) obtained

by simulation with the rate-distortion performance obtained by eval-
uating equations (34) and (35). As can be seen, the analytical results
are in good agreement with the results obtained by simulation.

Next we evalute the performance of various uniform threshhold
quantizers Ql for Wyner-Ziv coding. The quantizers have recon-
struction levels of the form Ql : xk = k∆ + γl, and are thus
characterized by γl which is the offset of x0 from the origin. Note
that quantizing a zero-mean random variable using quantizer Ql

is equivalent to quantizing a random variable with mean γl using
quantizer Q0. Thus, (34) and (35) can be used to obtain the rate-
distortion performance for the case in question. Figure 1 shows the
rate-SNR curves for quantizers with γ = 0.05∆, 0.25∆, 0.5∆. As
can be seen, the performance of the midtread quantizer (i.e. the
quantizer with γ = 0.5∆) dominates the performance of the other
quantizers. This result is satisying, as it is analogous to the result
obtained for traditional source coding.

Finally, we are now in a position to characterize the performance
loss of uniform scalar quantization followed by perfect Slepian-Wolf
coding. In order to do this, we compare the rate-distortion perfor-
mance given by (34), (35) for a mid-tread uniform threshold quan-
tizer with the Wyner-Ziv rate distortion bound [5]. The Wyner-Ziv
rate-distortion bound is evaluated numerically for the considered
Wyner-Ziv model, using an extended Blahut-Arimoto algorithm [7].
Figure 2 shows the result of the comparison—as can be seen the
performance of the uniform scalar quantizer is less than 1 dB away
from the theoretical Wyner-Ziv bound at rates below 0.5 bits per
symbol. At high rates, the performance of the uniform scalar quan-
tizer is, asymptotically, 1.5 dB away from the Wyner-Ziv bound as
predicted by source coding theory.

4. CONCLUSIONS

We have derived analytical expressions for rate-distortion perfor-
mance of uniform threshold scalar quantizers for Wyner-Ziv cod-
ing where the correlation channel from the side information to the
source is assumed to be memoryless, additive Laplacian. We have
compared the performance of various uniform threshhold scalar quan-
tizers for the problem at hand. By evaluating our analytical ex-
pressions, we have shown that at low bit-rates, mid-tread uniform
threshold scalar quantizers followed by perfect Slepian-Wolf coding
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can yield performance which is close to the theoretical Wyner-Ziv
bound.
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