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ABSTRACT
A design of a robust predictive vector quantizer for packet-

loss channels is presented. A linear prediction-based quan-

tizer is considered, in which the prediction residual is quan-

tized by a multiple description vector quantizer, and a simple

procedure is developed for iteratively improving the system

components, including the linear predictor, for a given chan-

nel loss probability. Experimental results obtained by design-

ing quantizers for a Markov source as well as for speech line

spectral pairs are presented.

1. INTRODUCTION

Predictive quantization is widely used in speech and video

coding. Fundamental to predictive quantization is the pre-

diction of the next source vector based on previously encoded

vectorswhich are available at both encoder and decoder. How-

ever, a difficulty arises when the encoder output is to be trans-

mitted over an unreliable channel such as a packet loss chan-

nel. In such a situation the decoder prediction is affected by

channel errors which results in a mismatch between encoder

and decoder predictions. The control of this mismatch error

is a critical issue in designing predictive quantizers for lossy

channels.

In some previous work dealing with this problem, the de-

sign of differential pulse code modulation (DPCM) systems

for packet-loss channels based on channel splitting has been
considered in [1],[2]. The basic idea is to transmit alternate

outputs of a predictive scalar quantizer in separate packets,

so that missing data (due to packet losses) can be estimated

from received data. In particular, the predictor and the de-

coder are designed to minimize the average error. However,

the generalization of this approach, particularly the optimiza-

tion procedure in [2], to VQ and to non-Gaussian sources is

not straightforward.

Different to previous work, we present in this paper a

general approach to designing multiple description predic-

tive VQ (MD-PVQ) systems in which multiple descriptions

are generated through multiple description vector quantiza-

tion (MDVQ) of the prediction residual. The main contribu-
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tion is a simple, training-based algorithm for designing linear

prediction based MD-PVQs to match the packet-loss rate of

the channel. Our algorithm is a generalization of ordinary

PVQ design algorithms presented in [3] and [4]. A related

work also appears in [5]. We present experimental results

to demonstrate the performance of several MD-PVQ systems

designed for both waveform coding in which block coding is

applied to sampled signals, and spectral coding of speech in

which the quantizer input is inherently a vector source.

2. SYSTEM DESCRIPTION

A block diagram of the proposed MD-PVQ system is shown

in Fig. 1. Different to an ordinary PVQ, the prediction resid-

ual in this system is quantized by an MDVQ encoder and

transmitted over two independent (memoryless) channels. We

assume that both channels have identical loss probabilities

and split the total transmission rate of 2R bits/sample equally

between the two channels. For each d-dimensional source

vectorXn, the MDVQ encoder ε generates two quantization

indexes (codewords) I
(1)
n , I

(2)
n ∈ {1, . . . , 2dR} by quantizing

the prediction errorUn = Xn− X̃n, where X̃n is the predic-

tion forXn. The MDVQ encoder ε can be viewed as an ordi-

nary VQ encoder, which produces an index In ∈ {1, . . . , N}
for each input Un, followed by an index assignment (IA)

which maps In to an index pair (I
(1)
n , I

(2)
n ) [6]. As in an ordi-

nary PVQ, the local VQ decoder δL reconstructs the predic-

tion error Ûn based on In. We assume that the linear predic-

tor β is of order L, so that

X̃n =

L∑

k=1

AkX̂n−k =

∞∑

m=1

BmÛn−m, (1)

where Am, m = 1, . . . , L are the d × d predictor matrices

and matricesBm,m = 1, . . . ,∞ are functions ofAk.

At the receiver, theMDVQ decoder δ reconstructs the pre-

diction residual Û′

n based on the channel output Jn = (Î
(1)
n ,

Î
(2)
n ), where Î

(l)
n is the output of the l-th channel. The recon-

structed source vector is then formed as X̂′

n = Û′

n + X̃′

n,

where X̃′

n is the prediction at the decoder. In this system,

three types of distortions are of interest: the overall average
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Fig. 1. Multiple description predictive vector quantizer.

distortion, the average distortion of decoding based on both

descriptions, referred to as central distortion, and the average
distortion of decoding based on only a single description, re-

ferred to as side-distortion. In this paper, average distortion
is measured by the mean square error (MSE). The goal of the

design is to minimize overall MSE.

3. DESIGN PROCEDURE

Suppose we have some reasonable values for initial code-

books and predictor coefficients of the system. Then, given

a training set of source vectors, an input training set for each

system component is generated. The system components are

improved for these training sets, using the conditions derived

below, and each training set is recomputed for the next design

iteration using the updated system. This procedure is repeated

until the change in the average distortion between two consec-

utive iterations is negligible.

Decoder Update- First, we consider optimizing theMDVQ
decoder δ for a givenMD-PVQ encoder (ε, δL, β). Let the ob-
served channel output sequence be jL

1 = (j1, . . . , jL). Here,
the sequence length L can, for example, be the packet-length.

Then, the optimal MD-PVQ decoder x̂′

n(jL
1 ) minimizes at

time n

E{‖Xn − x̂′

n(jL
1 )‖2|JL

1 = jL
1 }. (2)

It follows that the optimal decoder is x̂
′
∗

n (jL
1 ) =

E{Xn|J
L
1 = jL

1 } = E{Un|j
L
1 } + E{X̃n|j

L
1 }. (3)

The first term in (3) is the optimal estimate for the prediction

error which can be obtained by choosing the decoder δ as

δ∗(jL
1 ) = E{Un|j

L
1 }. (4)

The term E{X̃n|j
L
1 } in (3) is the optimal prediction at the

decoder. The decoder in (4) may not be overall optimal for

the decoder structure in Fig. 1, since it may not lead to the

optimal prediction as required in (3) (see for example [7]).

Nonetheless, we adopt the decoder given by (4) to preserve

the standard PVQ decoder structure. Furthermore, we use the

memoryless form of (4) given below, primarily to facilitate

the analysis of the matching encoder.

δ(jn) = E{Un|jn} =

N∑

in=1

E{Un|in}P (in|jn), (5)

jn = 1, . . . , N ′, where the centroidsE{Un|in} and the prob-
abilities P (in|jn) can be readily estimated from the output of
given ε.

Encoder Update- Next, we attempt to optimize theMDVQ
encoder ε and the VQ decoder δL for a given MD-PVQ de-

coder (δ, β). First, let us observe that, with ε, δ, and β fixed,

the predictor mismatch error is a function of the local decoder

δL. Therefore, a reasonable strategy is to choose the local de-

coder to minimize the mean-square predictor mismatch error

with respect to the given MD-PVQ decoder. Given that the

prediction X̃′

n generated at the receiver is a random variable

conditioned on the transmitted sequence in−1
1 , we wish to find

δL which minimizesE{‖x̃n−X̃′

n‖
2|in−1

1 }. This implies that
the output of δL must be such that the resulting prediction is

x̃∗

n = E{X̃′

n|i
n−1
1 } =

n−1∑

m=1

BmE{Û′

n−m|in−m}. (6)

From (1), it follows that this is achieved by choosing the local

decoder as

δ∗L(i) = E{Û′

n|In = i}. (7)

Since the prediction at time n is a deterministic func-

tion of previous encoder outputs in−1
1 , the residual encoder ε

quantizes un = xn − x̃n(in−1
1 ). Following [5], we define the

optimal residual quantizer as one which minimizes at time n

the conditionalMSEDn(xn|i, i
n−1
1 ) = E{‖xn−X̂′

n‖
2|In =

i, in−1
1 }. Accordingly, the optimal encoder partition is given

by ε∗(un) = i if

Dn(xn|i, i
n−1
1 ) ≤ Dn(xn|k, in−1

1 ) ∀k �= i, (8)

We now show that minimizing Dn(xn|i, i
n−1
1 ) is equivalent

to minimizingE‖un−Û′

n‖
2, if the prediction x̃n satisfies (6).

That is, ε∗ in this case is simply the optimal MDVQ encoder

for the given prediction error sequence. To see this, consider

D(xn|i, i
n−1
1 )

= E{‖un + E{X̃′

n|i
n−1
1 } − Û′

n − X̃′

n‖
2|In = i, in−1

1 }

= E{‖un − Û′

n‖
2|i} + E{‖x̃n − X̃′

n‖
2|in−1

1 }, (9)

where we use the fact that given in−1
1 , x̃n and X̃′

n are inde-

pendent of in. Since the second term in (9) does not depend

on i, it follows that the decoding rule in (8) is equivalent to

choosing In = i to minimize

E{‖un − Û′

n‖
2|In = i}. (10)

Given theMD codebook δ, obtaining theMDVQ encoder pre-

scribed by (10) is straightforward, see [6].
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Predictor Update- Finally, we address the problem of
optimizing the vector predictor in a given MD-PVQ system.

Given a source sequence {Xn}, let {Û
′(i)
n } and {X̂

′(i)
n } re-

spectively be the decoded prediction error sequence and the

decoder output sequence based on the output of i-th channel

with i = 0 for both channels. Then, the average distortion of
the MD-PVQ system can be given by D = p0D0 + p1D1 +
p2D2 + p3E‖Xn‖

2, whereDi =

E‖Xn − X̂
′(i)
n ‖2 = E‖Xn − Û

′(i)
n −

L∑

k=1

AkX̂
′(i)
n−k‖

2 (11)

and p0 = (1 − µ)2, p1 = p2 = µ(1 − µ), and p3 = µ2,

with µ being the channel loss probability. In (11), X̆
′(i)
n =

Xn−Û
′(i)
n is the prediction desired at the receiver when only

channel i is received. Thus,

D =
2∑

i=0

piE‖X̆
′(i)
n −

L∑

k=1

AkX̂
′(i)
n−k‖

2 + p3E‖Xn‖
2. (12)

Now consider the linear estimation problem of determining

the filter matrices Ak, k = 1, . . . , L which minimize D for

a given sequence of nT input-output pairs {(x̂
′(i)
n , x̆

′(i)
n ), i =

0, 1, 2}nT

n=1 of the filter. By setting the partial derivatives with

respect to coefficients in the filter matrices, we end up with a

generalized form of Wiener-Hopf equations

Q = ΛΓ−1, (13)

where Q = [A1, . . . ,AL] is the d × dL matrix of predictor

coefficients. To simplify the description of covariance matri-

ces Λ and Γ, let Z
(i)
n � (X̂

′(i)
n−1, . . . , X̂

′(i)
n−L)T , i = 0, 1, 2.

Then

Λ =
2∑

i=0

piE{X̆
′(i)
n Z(i)T

n }, Γ =
2∑

i=0

piE{Z(i)
n Z(i)T

n }.

In optimizing the predictor, we first obtain sample sequences

for {Û
′(i)
n } and {X̂

′(i)
n } using the given system. Then, a new

filter is estimated via (13) which is used to replace the existing

predictor. This procedure is recursively carried out as a part

of the design algorithm given below.
Design Algorithm- Given a training set {xn}

nT

n=1 , the
basis of the design algorithm is to use (5), (10), (7), and (13)
to iteratively improve an initial system ( ε0, δ0

L ,δ
0, β0). In the

following, l is the iteration number.

Step 1: Generate prediction error sequence {ul

n}
nT

n=1
, encoder out-

put sequence {iln}
nT

n=1
and reconstructed sequence {x̂

′
l

n}
nT

n=1
.

Step 2: Update εl using (10) and the training set {ul

n}.

Step 3: Update δl

L and δl using (7) and (5), using training sets {ul

n}

and {û
′
l

n}.

Step 4: Update βl using (13) and training sets {ûl

n} and {x̂
′
l

n}.

Step 5: Compute overall average distortion of the current system; if
the decrease in average distortion is small enough stop; oth-

erwise l = l + 1 and go to Step 1

4. EXPERIMENTAL RESULTS

Waveform Coding- First we consider waveform coding of a
Markov source, with the intention of comparing the result-

ing MD-PVQ designs with MD-DPCM approach presented

in [2]. The idea behind MD-DPCM is to place a sequence

of alternate outputs (say, odd and even) from a DPCM en-

coder in two separate packets. In case of a packet loss (odd

or even) only alternate (prediction error) samples are lost and

the missing samples are optimally interpolated from samples

in the received packet.

We investigate here the quantization of a simulated speech

source [8], given byXn = 1.748Xn−1−1.222Xn−2+0.301
Xn−3+Zn, where {Zn} is an i.i.d. Laplace process. The per-
formance of one dimensional (d = 1) and two-dimensional
(d = 2) MD-PVQ designs together with that of MD-DPCM
for this source is presented in Fig. 2. For simplicity we refer

to one dimensional MD-PVQ as MD predictive scalar quan-

tization (MD-PSQ). In the case of MD-PSQ, we have consid-

ered both 1-st and 2-nd order prediction, while for MD-PVQ

only 1-st order prediction is used (we found improvements

due to higher order prediction in two dimensional systems to

be marginal). In the experiments, a training set of 800,000

source samples have been used. The performance is mea-

sured by the overall signal-to-noise ratio (SNR). In all cases,

the encoding rate of 2 bits/sample per channel (4 bit/sample

total rate) and a transmission packet size of 128 source sam-

ples have been used.

At moderate to low packet loss probabilities (which may

be considered practically interesting), even MD-PSQ with 1-

st order prediction outperforms MD-DPCM. At loss proba-

bilities below 10−3, MD-PSQ with 2-nd order prediction is

substantially better than MD-DPCM. This is due to the im-

provement in the central SNR of MD-PSQ, brought about by

the use of 2-nd order prediction. In MD-DPCM system, a

2-nd order predictor (as opposed to a 1-st order predictor) is

used only to reduce side-distortion [2]. In other words, at low

packet loss probabilities the prediction in MD-DPCM is ef-

fectively only 1-st order and therefore does not contribute to-

wards improving the coding gain realizable with a 2-nd order

predictor. At best, MD-DPCM performance can only reach

that of an optimal DPCM system with 1-st order prediction.

As the loss probability is increased, the predictor in MD-

DPCM increasingly puts more emphasis on x̂n−2 in predict-

ing xn thereby reducing the average predictor mismatch error

due to more frequent packet losses [2]. In contrast, 2-nd or-

der prediction in MD-PSQ is purely used to increase the cod-

ing gain of the predictive encoder and hence the central SNR.

This makes MD-PSQ with higher-order prediction substan-

tially better at low-loss probabilities. In particular, at very low

loss probabilities, the performance of MD-PSQ with L-th or-

der prediction reaches that of an optimal predictive quantizer

with L-th order prediction. The apparent degradation of MD-

PSQ performance at high loss probabilities is due to relatively
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Fig. 2. Performance of various MD-PVQ systems and MD-
DPCM [2] for the simulated speech process.

poor performance of the MD scalar quantizer used to encode

the prediction residual. This is confirmed by the fact that the

side-distortion and hence the overall performance at high loss

probabilities is substantially better with 2-dimensional MD-

PVQ.

LSP-based Speech Coding- Next we consider MD-PVQ
of speech line spectral pairs (LSP) commonly used in sev-

eral low bit rate speech coding standards. Our experiments

are based on sampled speech from the TIMIT data base [9].

A training set of 706,150 LSP vectors and a separate test set

of 258,040 LSP vectors were first generated. The LSP vec-

tors were computed through a 10th order linear prediction

coefficient (LPC) analysis, performed every 20 ms using a

25 ms analysis window. Thus, each 20 ms frame of speech

(160 samples) is represented by a vector of 10 LSPs. Since

10-dimensional VQ of these LSPs is infeasible due to high

complexity, we used a (3,3,4) split VQ scheme [10]. A to-

tal bit rate of 24 bits/vector has been used, with each split

VQ being allocated an equal number of bits. We considered

a low-delay speech coding system in which each transmitted

packet carries information pertaining to a single speech frame

(one LSP vector). As usual with LSP based coding systems,

we measure the performance of MD-PVQ designs using the

spectral distortion (SD) [10]. For comparison, we also con-
sidered a non-predictive coding scheme (referred to as NP-

VQ) in which each LSP vector is quantized by a (3,3,4) non-

predictive split VQ of the same rate as the MD-PVQ. In this

system, lost LSP vectors are estimated at the receiver based

on previously received LSP vectors using an optimal linear

predictor. In other words, we make use of inter-vector cor-

relation in the decoder to recover the missing vectors, rather

than using this correlation at the encoder to increase the cod-

ing gain. A performance comparison of the two systems is

Table 1. Comparison of MD-PVQ and NP-VQ for coding of
speech LSPs at 24 bits/frame.

Loss Prob. SD [dB]

MD-PVQ NP-VQ

0.0001 1.04 1.31

0.001 1.05 1.31

0.01 1.14 1.33

0.02 1.23 1.36

0.03 1.32 1.39

0.05 1.46 1.44

presented in Table 1. At low to moderate loss probabilities

(less than 5%), the MD-PVQ system provides a significant
advantage over the non-predictive system (about 0.25 dB in

SD for loss probabilities less than 0.001 which is quite signif-

icant in terms of perceptual quality).

In quantization of speech LSP vectors, improved percep-

tual quality can be obtained by using a weighted MSE as the

distortion measure [10]. The given algorithm may be readily

extended to achieve this. A related work can be found in [5].
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