
DISTRIBUTED SOURCE CODING WITH CONTEXT MODELING 

Yong Sun 
Electrical and Computer Engineering, Texas A&M Univ., 

11B/C Zachry Bld., College Station, TX 77843 

Email: sunny@ee.tamu.edu

Jin Li 
Communication and Collaboration Systems, Microsoft Research

One Microsoft Way, Bld. 113, Redmond, WA 98052 

Email: jinl@microsoft.com

ABSTRACT 

We introduce context modeling into the distributed source 

coding (DSC). By forming contexts from prior coded bitplanes of 

both the reference and DSC coded peer, we split the virtual 

channel between the two correlated bitplanes into several virtual 

sub-channels of different characteristics. The selection of the sub-

channel becomes side information that is known to the receiver. As 

a result, the DSC coding bitrate is reduced. We also investigate a 

number of practical implementation issues in DSC; e.g., the use of 

turbo-based channel code vs. the LDPC-based channel code, and 

the use of a random flipper to handle the binary asymmetric 

channel. We implemented a practical DSC audio coding system. 

We show that DSC without context modeling shows little 

performance gain compared with separate source coding with 

context modeling. In comparison, context DSC achieves an overall 

rate saving of 36%, even as we only applied DSC on a selected 

number of bitplanes, and considering the channel code loss in 

practical implementation.  

1. INTRODUCTION 

Distributed source coding (DSC) [1][2] enables efficient 

compression of the outputs of two or more physically separated 

sources without the sources communicating with each other. DSC 

has become an active research area because it enables efficient 

information compression for a number of emerging applications, 

e.g., CEO (central estimation officer) problem in a sensor network, 

the peer-to-peer (P2P) streaming of analog TV/radio, etc.  

The information theory foundation of DSC is the Slepian-Wolf 

Theory [3], which states that the lossless compression of two 

separated source can be made as efficient as if they are compressed 

together as long as joint decoding is done at the receiver. As a 

result, DSC is often referred as Slepian-Wolf coding (SWC). 

Although the theory behind DSC has been well understood for 

over 30 years, practical DSC implementation is far from simple. 

The implementation of DSC is closely tied to channel coding [1]. 

The reference and the coded symbol of DSC can be considered as 

the input and the output of a virtual channel, and the DSC design is 

equivalent to the design of a proper channel code that is capable of 

correcting errors of the virtual channel. As a result, direct DSC 

coding on multi-level symbols can be converted to the problem of 

designing an efficient channel code that may handle multi-level 

channel errors. Such a channel code has not been well studied in 

the past, and practical implementation of such code often results in 

performance far inferior to the channel code designed for the well- 

understood binary symmetric channel (BSC), e.g., turbo codes [4] 

and LDPC codes [5]. A popular DSC implementation for multi-

level symbols is based on the bitplane coding. In such scheme, 

coefficient at the reference and the coded peers are first separated 

into bitplanes. Then, DSC is applied to each bitplanes separately. 

The approach converts a multi-level DSC into multiple binary 

DSCs.  

Although simple and straightforward, the practical 

implementation of bitplane based DSC does not demonstrate 

superior compression performance compared to separately entropy 

encoding the two sources. This is due to a number of factors. First, 

bitplane source coding usually uses advanced statistical technology 

such as context modeling, which takes advantage of the correlation 

between the bits. No existing DSC has used context modeling or 

has effectively explored the correlation between the bits. Second, 

existing channel code designed for BSC has a number of 

limitations, e.g., it usually targets BSC channel, has only a number 

of code profiles and may have to use a higher code rate for a 

certain effective channel error rate in DSC. Moreover, the 

performance gap between what can be achieved by a practical 

channel coder and the theoretical bound is also larger than the 

performance gap between what can be achieved by a practical 

source coder and its theoretical bound.  

In this work, continuing on the footsteps of the practical DSC 

implementation pioneered by Aaron and Girod in [6] and Xiong et 

al. in [7], we work further to bring DSC closer to practicality. Two 

issues have been investigated in the paper. First, we introduce 

context modeling in DSC coding, which allows correlation 

between the bitplane to be explored. Second, we investigate a 

number of practical channel code issues that effectively adapt the 

channel code designed for BSC to DSC coding scenario. The rest 

of the paper is organized as follows. We introduce our DSC system 

in Section 2. We discuss the context DSC and practical channel 

code for DSC in Section 3. The efficiency of our proposed system 

is evaluated by DSC audio coding in section 4. We give a 

conclusion in Section 5. 

2. DISTRIBUTED SOURCE CODING: FRAMEWORK 

The DSC system framework is shown in Figure 1. We focus on 

the coding with side information. The upper path of the system is a 

traditional source coder. The input signal Y1 is first transform and 

quantized to coefficients P1. The quantized coefficients are then 

split into bitplanes, and entropy encoded from the most significant 

bitplanes (MSB) to the least significant bitplanes (LSB). At the 

receiver, the compressed bitstreams are entropy decoded. Because 

the entropy encoder and decoder module is lossless, if all bitplanes 

are decoded, the recovered quantized coefficients will be exactly 

the same as P1. Finally, the decoded coefficients are inverse 

quantized and inverse transformed to reconstruct the source
1

Y .

The lower path of the system is the DSC path. The input signal 

of the lower path Y2 is transformed and quantized into coefficients 

P2 via exactly the same transform and quantization module of the 

upper path. The coefficients are split into bitplanes, and DSC 
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encoded from MSB to LSB. Obviously, the correlation between 

the DSC bitplane and its reference bitplane is stronger at the more 

significant bitplanes, and is weaker at the less significant bitplanes. 

At the decoder, the bitplane is DSC decoded with the 

corresponding bitplane of the upper path as side information. 

Finally, the DSC decoded bitplanes are reassembled into the 

quantized coefficients P2, inversely quantized and inversely 

transformed to recover the transform coefficients
2

Y .
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1Ŷ
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Figure 1 System framework of direct and indirect distributed 

source coding. 

In Figure 1, both the entropy coding and the DSC coding 

proceeds from MSB to LSB. Moreover, coding of the less 

significant bitplanes only requires information of the more 

significant bitplanes. As a result, our proposed DSC system is 

scalable. The bitstreams of both paths can be truncated for 

decoding of signals at less quality level.  

The above framework assumes that both signals Y1 and Y2 are 

observed from separate sensors. It is called direct DSC coding. If 

both signals come from a common signal source X, Y1 and Y2 can 

be considered the noisy observation of the source. The problem is 

called indirect DSC coding, and the source X is not observed 

directly. We may estimate the source via a linear estimator: 

1 2 2
α α= +

1
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In eqn (2), E[X2] is the energy of the source, σz
2 is the observation 

noise variance, and D is the coding distortion of the signal Y1 and 

Y2. The observation error of the source X can be calculated as: 
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3. PRACTICAL DISTRIBUTED SOURCE CODING 

3.1. Context modeling in distributed source coding 
Context modeling is a widely used technology in modern 

source coding. It has been extensively studied for statistical model-

based arithmetic coding, e.g., [8]. JPEG 2000, a modern image 

compressor, utilizes context modeling in its bitplane coding engine 

to improve the compression efficiency. Context is defined as a 

category value assigned to a certain symbol (bit) based on prior 

coded symbols (bits). In JPEG 2000, the bits in a bitplane are 

classified into three big categories based on the context: significant 

identification, refinement and sign. Sign is just + and - of the 

coefficient. For a certain bit of a certain coefficients, if all the bits 

in the more significant bitplanes are all 0s, the bit belongs to the 

significant identification. Otherwise, it belongs to refinement. An 

example is shown in Figure 2. We put the sign bits in the topmost 

row. All bits in significant identification are marked with shadow, 

the refinement bits are shown in clear box. Context modeling can 

improve compression efficiency because bits belong to different 

context are highly different in entropy statistics and coding 

distortion statistics. By separating bits into different contexts 

(JPEG 2000 actually creates further sub-contexts, and uses 9 

contexts for significant identification bit coding, 5 contexts for 

sign coding, and 3 contexts for refinement coding), a modern 

source coder may separate bits into a compound source with 

different entropy characteristics, apply statistical modeling 

separately, and apply suitable entropy coding parameter for each 

source.  
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Figure 2 Context in Bitplane source coding: Significant 

identification bits, refinement bits, and sign bits. 

In this paper, we extend context modeling to DSC. Because 

there are two peers in DSC, the DSC context also involve the 

bitplanes of both peers. Let the current coded bitplane be the ith

bitplane, let the reference bitplane at peer 1 be Ui, and the DSC 

coded bitplane at peer 2 be Vi. We use j index to index the 

coefficient, therefore, the ith bit at peer 1 and 2 is Ui,j and Vi,j,

respectively. All more significant bitplanes at peer 1 form the 

reference context: 

{ }, ,=i M-1 i+1A U U , (4) 

and all the more significant bitplanes at peer 2 form the coded 

context: 

{ }, ,=i M-1 i+1B V V . (5) 

With context modeling, the virtual channel in DSC becomes a 

compound virtual channel, as shown in Figure 3. Depending on the 

context value of Ai and Bi, a sub-channel is selected among the 

compound virtual channel. Different sub-channel may exhibit 

different channel error characteristics.  

Ui

Vi

Virtual Channel

Ai and Bi

Compound Virtual Channel

Ui

Vi

Virtual Channel

Ai and Bi

Compound Virtual Channel

Figure 3 Context in distributed source coding.  

We do observe that context modeling in DSC differs from that 

of source coding. First, obtaining statistics of each sub-channel is 

trickier. In context source coding, statistics of the already coded 

symbol in a context is directly used as the statistics of the symbol 

for future coding. This could be used similarly in DSC. However, 

because the correlation between the reference and coded bitplanes 

in DSC may change dramatically across different bitplanes, it may 

not as effective. An alternative approach assumes knowledge of the 

correlation of the reference and coded signal Y1 and Y2. We may 

then use Monte-Carlo simulation to calculate the statistics of each 

context of each bitplane. In this work, we use four contexts for 

bitplane coding and two contexts for sign coding (as signs are only 

coded when a coefficient becomes non-zero). The definition and 
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the statistics collected for each context are shown in Table 1 and 

Table 2. 

Table 1 Context for bitplane in distributed source coding 

Bit context definition Statistics collected 

sig,sig Ai,j=0, Bi,j=0 p(Vi,j Ui,j,Ai,j=0,Bi,j=0),p(Ai,j=0,Bi,j=0)

sig, ref Ai,j=0, Bi,j≠0 p(Vi,j Ui,j,Ai,j=0,Bi,j≠0),p(Ai,j=0,Bi,j≠0)

ref,sig Ai,j≠0, Bi,j=0 p(Vi,j Ui,j,Ai,j≠0,Bi,j=0),p(Ai,j≠0,Bi,j=0)

ref,ref Ai,j≠0, Bi,j≠0 p(Vi,j Ui,j,Ai,j≠0,Bi,j≠0),p(Ai,j≠0,Bi,j≠0)

Table 2 Context for sign coding in distributed source coding 

Sign ctx definition Statistics collected 

Sig Ai,j=0, Bi,j≠0 p(Vi,j Ui,j,Ai,j=0,Bi,j≠0),p(Ai,j=0,Bi,j≠0)

Ref Ai,j≠0, Bi,j≠0 p(Vi,j Ui,j,Ai,j≠0,Bi,j≠0),p(Ai,j≠0,Bi,j≠0)

In DSC, the exact contexts are only available to the receiver, 

and are not available to the sender. As a result, the context DSC 

encoder only uses collective information of the compound channel. 

More specifically, for the DSC encoder, we will only need the 

channel error rate Ri at bitplane i:
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The DSC encoder selects a proper channel code and channel 

code rate. The exact context of each bit is provided only to the 

DSC decoder, which will use the context information and the 

statistics of each context to set the a prior log likelihood (LLR) of 

each bit for the turbo or LDPC channel decoder. In short, the LLR 

of coefficient j at bitplane i is set to: 

, , , ,

, , , ,

( 0 | , , )
( , ) log ,

( 1 | , , )

i j i j i j i j

i j i j i j i j

p V U A B
LLR i j

p V U A B

=
=

=
 (7) 

We may then proceeds with turbo or LDPC channel decoding 

with Belief propagation.  

3.2. Turbo vs LDPC based distributed source coding 
The channel codes usually considered for DSC are the turbo 

codes [4] and the LDPC codes [5]. Turbo code is usually 

constructed via the parallel concatenation of two convolutional 

codes with an interleaver placed in front of one of the 

convolutional codes. The construction of the turbo code is 

systematic, and a new turbo code can be readily generated for any 

input block length.  

In comparison, LDPC code is constructed via a graph linking 

two sets of nodes: the variable nodes (holding the information bits) 

and the source nodes (holding the parity bits). The two sets are 

connected through an edge interleaver. A good LDPC code needs 

an edge interleaver that is free of short cycles (at lease length-2 and 

length-4 cycles), and the removal of cycles is the primary 

computation complexity in LDPC code construction and is very 

expensive. Therefore, LDPC code needs to be pre-designed with 

input block length. Moreover, when the channel error rate becomes 

low, the removal of short cycles becomes difficult to perform. We 

can only generate successful interleavers at code rates above 0.1.  

We compare the BSC channel code performance of the turbo 

and LDPC code, and show the result in Table 3. In the experiment, 

we use a simulated BSC channel with error rate Ri being 0.125, 

0.25 and 0.5bpp, respectively. We then gradually increase the 

channel code rate until all errors can be corrected. We record the 

gap between the channel code rate and the actual channel error rate 

for turbo and LDPC code, and report the result in Table 3. Larger 

gap indicates poor channel code performance. We observe that 

LDPC codes always work better than turbo codes. Moreover, the 

performance gap between the turbo and LDPC grows larger when 

the channel error rate becomes high.  

Table 3 channel code performance: turbo vs. LDPC. 

Channel error rate Turbo 

Loss=R2-H(V|U)

LDPC 

Loss=R2-H(V|U)

1/8 0.036 0.034 

1/4 0.060 0.038 

1/2 0.145 0.037 

Based on the above observations, we use the LDPC code for 

those bitplanes where the channel error rate is above 0.1, and use 

the turbo codes for those bitplanes where the channel error rate is 

below 0.1.  

3.3. Binary Asymmetric Channel 
Existing turbo and LDPC code are designed for BSC channel, 

where bit 0 occurs in equal probability to bit 1. However, in 

bitplane coding, only the refinement bit is equally probable. The 

bit in significant identification is highly skewed towards zero, both 

for a prior probability of the reference bit U, and for the transfer 

probability towards the coded bit V. This can be shown in Figure 

4. We observe that the LDPC-based DSC does not suffer in 

performance with regard to the binary asymmetric channel. 

However, the performance of the turbo-based SWC suffers 

significantly.  

U

0

1

0

1

V
2q

1q

11 q−

21 q−

p

p−1

1;21 →≠ pqqU

0

1

0

1

V
2q

1q

11 q−

21 q−

p

p−1

1;21 →≠ pqq

Figure 4. Binary asymmetric channel.  

One solution is to re-design the turbo code based on the binary 

asymmetric channel, as proposed in [9]. However, this involves 

significant work and is not trivial. In this paper, we adopt a simple 

solution: we just use a random flipper to transfer the binary 

asymmetric channel into a BSC channel. We use a pseudo random 

seed which is synchronized between the encoder and decoder to 

generate a pseudo random binary stream. This pseudo random 

stream is then xored onto the Ui and Vi before they are DSC 

encoded. At the time of DSC decoding, the same pseudo random 

sequence is xored to the reference bitplane to correct the bias. We 

found the use of random flipper greatly improve the DSC 

performance of turbo coding. The random flipper is used for all 

turbo-based DSC in the experimental results.    

4. EXPERIMENTAL RESULTS 

We apply the proposed context DSC for distributed audio 

coding. We use the experimental setup in Figure 1. The audio 

source used in the experiment is obtained from the MPEG sound 

quality assessment material [10]. We assume that the original 

audio is broadcast by radio, and received by two peers with 

uncorrelated AWGN noise of 80dB. Each peer then transform the 

audio via the modified DCT transform (MDCT), and then apply a 

rate-18 memory-8 TCQ. We want the receiving peers to recover 

the original audio X at 80.6dB. Calculation shows that this can be 

achieved by TCQ quantizing each source with quantization step 

size 5.6. 
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Table 4 Separate source coding and distributed source coding:  

without and with context. 

  No context 

coding 

Context 

coding 

Gain by 

context 

coding 

Separate source coding 7.79 6.38 18.10% 

Distributed source coding 6.24 4.83 22.60% 

DSC saving 19.90% 24.29% Overall=38%

We first compare the separate source coding and DSC, both 

with and without context coding. The results are shown in Table 4. 

We show that the context modeling is a powerful technology in 

both source coding and DSC. It achieves a rate reduction of 18% 

in the source coding, and achieves a rate reduction of 23% in DSC. 

The performance of DSC without context modeling is only 2% 

better than the separate source coding with context modeling. 

However, applying context modeling in DSC, we may achieve an 

additional saving of 22%, and allow DSC to beat separate source 

coding significantly.  
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Figure 5 Saving of distributed source coding: bitplane result. 

Our entropy analysis also shows that the saving of DSC is 

highly non-uniform across the bitplanes. We show the rate saving 

of each bitplane of using DSC vs. separate source coding (both 

with context modeling) in Figure 5. The horizontal axis is the 

bitplane index, the vertical index is the DSC rate saving in bit per 

symbol (bps). We observe that the DSC rate saving is small (below 

0.06bps) in bitplanes 0 and 7-16. At most significant bitplanes, the 

correlation between the bitplanes is strong. However, the entropy 

of the bitplanes is very low. As a result, the DSC saving is low in 

bps as well. Because it is difficult to do DSC at low channel error 

rate, we will simply use separate source coding for those bitplanes. 

At bitplane 0, the correlation of the two bitplanes is weak. 

Therefore, DSC does not provide much saving either. As a result, 

we decide to apply DSC only to bitplanes 1-6 and the sign 

bitplane. Our decision results in a total rate loss of 0.18bps, which 

is about 3% of the coding bitrate of separate source coding.  

 To implement DSC practically, we need to select a proper 

channel code and code parameter based on the entropy analysis 

above. Following the discussion in Section 3.2, we apply LDPC 

code to the bitplanes 1 and 2, where the compound virtual channel 

error rate is above 0.1 bps. We apply turbo code to the bitplanes 3-

6, where the compound virtual channel error rate is below 0.1bps. 

The DSC code and code parameters used for each bitplane coding 

of our experiment can be found in Table 5.  

Table 5 SWC code selection and code parameter. 

BP# H(V|UAB) Channel Code Bit rate Rate loss 

17 0.307486 0.38-LDPC 0.336453 0.028967

6 0.001819 140/141-Turbo 0.007143 0.005324

5 0.005725 46/47-Turbo 0.021739 0.016014

4 0.015694 21/22-Turbo 0.047621 0.031927

3 0.041432 12/13-Turbo 0.083333 0.041901

2 0.108174 0.85-LDPC 0.15 0.041826

1 0.268990 0.7-LDPC 0.3 0.031010

SUM 0.749320 - 0.946289 0.196969

In Table 5, there is always a performance gap between the 

channel error rate and the channel code rate. The performance gap 

is due both to the design of the channel code (only a number of 

channel code profiles can be pre-designed) and due to the 

requirement to achieve zero-error in channel decoding in DSC. We 

observe a further rate loss of 0.2bps, or 3% in practical DSC 

implementation. Overall, our practical DSC audio coding system 

achieves a total rate of 5.21bps, which represents an 18% rate 

saving compared with separate coding of the source. Because one 

path of DSC is exactly the same as separate source coding, the 

DSC path actually achieves a rate saving of 36% compared with 

separate source coding.  

5. CONCLUSIONS

We introduce context modeling to DSC and develop practical 

DSC design that switch between turbo and LDPC-based DSC. 

Context DSC achieves a rate saving of 36% compared with 

separate source coding. 

REFERENCES

[1] S. Pradhan, J. Kusuma, and K. Ramchandran, “Distributed 

compression in a dense microsensor network,” IEEE Signal 

Processing Magazine, vol. 19, pp. 51-60, March 2002. 

[2] Z. Xiong, A. Liveris, and S. Cheng, “Distributed source 

coding for sensor networks,” IEEE Signal Processing Magazine,

vol. 21, pp. 80-94, September 2004. 

[3] D. Slepian and J.K. Wolf, “Noiseless coding of correlated 

information sources,” IEEE Trans. Info. Theory, vol. 19, pp. 471-

480, July 1973. 

[4] C. Berrou and A. Glavieux, “Near optimum error correcting 

coding and decoding: turbo-codes,” IEEE Trans. Comm., vol. 44, 

pp. 1261-1271, October 1996. 

[5] R. Gallager, Low Density Parity Check Codes, MIT Press, 

1963.

[6] A. Aaron and B. Girod, “Compression with side information 

using turbo codes,” Proc. DCC’02, Snowbird, UT, April 2002. 

[7] A. Liveris, Z. Xiong and C. Georghiades, “Compression of 

binary sources with side information at the decoder using LDPC 

codes,” IEEE Comm. Letters, vol. 6, pp. 440-442, October 2002. 

[8] J. Rissanen, “A universal data compression system”, IEEE

Trans. Info. Theory, vol. IT-29, pp.656-664, Sept. 1983. 

[9] J. Li, Z. Tu, and R.S. Blum, “Slepian-Wolf Coding for 

Nonuniform Sources Using Turbo Codes,” Proc. DCC’04,

Snowbird, UT, March 2004. 

[10]  “Sound quality assessment material recordings for subjective 

tests”, http://www.tnt.uni-hannover.de/project/mpeg/audio/sqam/. 

IV ­ 208


