
DISTRIBUTED SOURCE CODING WITH CONTEXT MODELING

Yong Sun
Electrical and Computer Engineering, Texas A&M Univ.,

11B/C Zachry Bld., College Station, TX 77843

Email: sunny@ee.tamu.edu

Jin Li
Communication and Collaboration Systems, Microsoft Research

One Microsoft Way, Bld. 113, Redmond, WA 98052

Email: jinl@microsoft.com

ABSTRACT

We introduce context modeling into the distributed source

coding (DSC). By forming contexts from prior coded bitplanes of

both the reference and DSC coded peer, we split the virtual

channel between the two correlated bitplanes into several virtual

sub-channels of different characteristics. The selection of the sub-

channel becomes side information that is known to the receiver. As

a result, the DSC coding bitrate is reduced. We also investigate a

number of practical implementation issues in DSC; e.g., the use of

turbo-based channel code vs. the LDPC-based channel code, and

the use of a random flipper to handle the binary asymmetric

channel. We implemented a practical DSC audio coding system.

We show that DSC without context modeling shows little

performance gain compared with separate source coding with

context modeling. In comparison, context DSC achieves an overall

rate saving of 36%, even as we only applied DSC on a selected

number of bitplanes, and considering the channel code loss in

practical implementation.

1. INTRODUCTION

Distributed source coding (DSC) [1][2] enables efficient

compression of the outputs of two or more physically separated

sources without the sources communicating with each other. DSC

has become an active research area because it enables efficient

information compression for a number of emerging applications,

e.g., CEO (central estimation officer) problem in a sensor network,

the peer-to-peer (P2P) streaming of analog TV/radio, etc.

The information theory foundation of DSC is the Slepian-Wolf

Theory [3], which states that the lossless compression of two

separated source can be made as efficient as if they are compressed

together as long as joint decoding is done at the receiver. As a

result, DSC is often referred as Slepian-Wolf coding (SWC).

Although the theory behind DSC has been well understood for

over 30 years, practical DSC implementation is far from simple.

The implementation of DSC is closely tied to channel coding [1].

The reference and the coded symbol of DSC can be considered as

the input and the output of a virtual channel, and the DSC design is

equivalent to the design of a proper channel code that is capable of

correcting errors of the virtual channel. As a result, direct DSC

coding on multi-level symbols can be converted to the problem of

designing an efficient channel code that may handle multi-level

channel errors. Such a channel code has not been well studied in

the past, and practical implementation of such code often results in

performance far inferior to the channel code designed for the well-

understood binary symmetric channel (BSC), e.g., turbo codes [4]

and LDPC codes [5]. A popular DSC implementation for multi-

level symbols is based on the bitplane coding. In such scheme,

coefficient at the reference and the coded peers are first separated

into bitplanes. Then, DSC is applied to each bitplanes separately.

The approach converts a multi-level DSC into multiple binary

DSCs.

Although simple and straightforward, the practical

implementation of bitplane based DSC does not demonstrate

superior compression performance compared to separately entropy

encoding the two sources. This is due to a number of factors. First,

bitplane source coding usually uses advanced statistical technology

such as context modeling, which takes advantage of the correlation

between the bits. No existing DSC has used context modeling or

has effectively explored the correlation between the bits. Second,

existing channel code designed for BSC has a number of

limitations, e.g., it usually targets BSC channel, has only a number

of code profiles and may have to use a higher code rate for a

certain effective channel error rate in DSC. Moreover, the

performance gap between what can be achieved by a practical

channel coder and the theoretical bound is also larger than the

performance gap between what can be achieved by a practical

source coder and its theoretical bound.

In this work, continuing on the footsteps of the practical DSC

implementation pioneered by Aaron and Girod in [6] and Xiong et

al. in [7], we work further to bring DSC closer to practicality. Two

issues have been investigated in the paper. First, we introduce

context modeling in DSC coding, which allows correlation

between the bitplane to be explored. Second, we investigate a

number of practical channel code issues that effectively adapt the

channel code designed for BSC to DSC coding scenario. The rest

of the paper is organized as follows. We introduce our DSC system

in Section 2. We discuss the context DSC and practical channel

code for DSC in Section 3. The efficiency of our proposed system

is evaluated by DSC audio coding in section 4. We give a

conclusion in Section 5.

2. DISTRIBUTED SOURCE CODING: FRAMEWORK

The DSC system framework is shown in Figure 1. We focus on

the coding with side information. The upper path of the system is a

traditional source coder. The input signal Y1 is first transform and

quantized to coefficients P1. The quantized coefficients are then

split into bitplanes, and entropy encoded from the most significant

bitplanes (MSB) to the least significant bitplanes (LSB). At the

receiver, the compressed bitstreams are entropy decoded. Because

the entropy encoder and decoder module is lossless, if all bitplanes

are decoded, the recovered quantized coefficients will be exactly

the same as P1. Finally, the decoded coefficients are inverse

quantized and inverse transformed to reconstruct the source
1

Y .

The lower path of the system is the DSC path. The input signal

of the lower path Y2 is transformed and quantized into coefficients

P2 via exactly the same transform and quantization module of the

upper path. The coefficients are split into bitplanes, and DSC

IV 205142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

encoded from MSB to LSB. Obviously, the correlation between

the DSC bitplane and its reference bitplane is stronger at the more

significant bitplanes, and is weaker at the less significant bitplanes.

At the decoder, the bitplane is DSC decoded with the

corresponding bitplane of the upper path as side information.

Finally, the DSC decoded bitplanes are reassembled into the

quantized coefficients P2, inversely quantized and inversely

transformed to recover the transform coefficients
2

Y .

X

1Z

2Z

Q Entropy

encode

DSC

encode

1Y

2Y

Entropy

decode

1P

2P

1W

2W

Q-1

X̂

1P

2P

1Ŷ

2Ŷ Li
n
e
a
r

E
st

im
a
to

r

Q DSC
decode

TRANS

FORM

TRANS

FORM

BPs
info.side

TRANS

FORM-1

Q-1 TRANS

FORM-1

X

1Z

2Z

Q Entropy

encode

DSC

encode

1Y

2Y

Entropy

decode

1P

2P

1W

2W

Q-1

X̂

1P

2P

1Ŷ

2Ŷ Li
n
e
a
r

E
st

im
a
to

r

Q DSC
decode

TRANS

FORM

TRANS

FORM

BPs
info.side

TRANS

FORM-1

Q-1 TRANS

FORM-1

Figure 1 System framework of direct and indirect distributed

source coding.

In Figure 1, both the entropy coding and the DSC coding

proceeds from MSB to LSB. Moreover, coding of the less

significant bitplanes only requires information of the more

significant bitplanes. As a result, our proposed DSC system is

scalable. The bitstreams of both paths can be truncated for

decoding of signals at less quality level.

The above framework assumes that both signals Y1 and Y2 are

observed from separate sensors. It is called direct DSC coding. If

both signals come from a common signal source X, Y1 and Y2 can

be considered the noisy observation of the source. The problem is

called indirect DSC coding, and the source X is not observed

directly. We may estimate the source via a linear estimator:

1 2 2
α α= +

1
X Y Y , where (1)

()1 2 22 z

E

E D
α α

σ
= =

+ +

2

2

X

X

. (2)

In eqn (2), E[X2] is the energy of the source, σz
2 is the observation

noise variance, and D is the coding distortion of the signal Y1 and

Y2. The observation error of the source X can be calculated as:

() ()
()

2
2

22

z

z

E D
E

E D

σ
σ

+
− =

+ +

2

2

X
X X

X

. (3)

3. PRACTICAL DISTRIBUTED SOURCE CODING

3.1. Context modeling in distributed source coding
Context modeling is a widely used technology in modern

source coding. It has been extensively studied for statistical model-

based arithmetic coding, e.g., [8]. JPEG 2000, a modern image

compressor, utilizes context modeling in its bitplane coding engine

to improve the compression efficiency. Context is defined as a

category value assigned to a certain symbol (bit) based on prior

coded symbols (bits). In JPEG 2000, the bits in a bitplane are

classified into three big categories based on the context: significant

identification, refinement and sign. Sign is just + and - of the

coefficient. For a certain bit of a certain coefficients, if all the bits

in the more significant bitplanes are all 0s, the bit belongs to the

significant identification. Otherwise, it belongs to refinement. An

example is shown in Figure 2. We put the sign bits in the topmost

row. All bits in significant identification are marked with shadow,

the refinement bits are shown in clear box. Context modeling can

improve compression efficiency because bits belong to different

context are highly different in entropy statistics and coding

distortion statistics. By separating bits into different contexts

(JPEG 2000 actually creates further sub-contexts, and uses 9

contexts for significant identification bit coding, 5 contexts for

sign coding, and 3 contexts for refinement coding), a modern

source coder may separate bits into a compound source with

different entropy characteristics, apply statistical modeling

separately, and apply suitable entropy coding parameter for each

source.

+ - + - - +

1 0 0 0 0 0

0 1 0 1 0 0

1 0 1 1 0 1

0 1 0 1 0 1

Sign

3BP

2BP

1BP

0BP

0 1 2 3 4 5

+ - + - - +

1 0 0 0 0 0

0 1 0 1 0 0

1 0 1 1 0 1

0 1 0 1 0 1

+ - + - - +

1 0 0 0 0 0

0 1 0 1 0 0

1 0 1 1 0 1

0 1 0 1 0 1

Sign

3BP

2BP

1BP

0BP

0 1 2 3 4 5

Figure 2 Context in Bitplane source coding: Significant

identification bits, refinement bits, and sign bits.

In this paper, we extend context modeling to DSC. Because

there are two peers in DSC, the DSC context also involve the

bitplanes of both peers. Let the current coded bitplane be the ith

bitplane, let the reference bitplane at peer 1 be Ui, and the DSC

coded bitplane at peer 2 be Vi. We use j index to index the

coefficient, therefore, the ith bit at peer 1 and 2 is Ui,j and Vi,j,

respectively. All more significant bitplanes at peer 1 form the

reference context:

{ }, ,=i M-1 i+1A U U , (4)

and all the more significant bitplanes at peer 2 form the coded

context:

{ }, ,=i M-1 i+1B V V . (5)

With context modeling, the virtual channel in DSC becomes a

compound virtual channel, as shown in Figure 3. Depending on the

context value of Ai and Bi, a sub-channel is selected among the

compound virtual channel. Different sub-channel may exhibit

different channel error characteristics.

Ui

Vi

Virtual Channel

Ai and Bi

Compound Virtual Channel

Ui

Vi

Virtual Channel

Ai and Bi

Compound Virtual Channel

Figure 3 Context in distributed source coding.

We do observe that context modeling in DSC differs from that

of source coding. First, obtaining statistics of each sub-channel is

trickier. In context source coding, statistics of the already coded

symbol in a context is directly used as the statistics of the symbol

for future coding. This could be used similarly in DSC. However,

because the correlation between the reference and coded bitplanes

in DSC may change dramatically across different bitplanes, it may

not as effective. An alternative approach assumes knowledge of the

correlation of the reference and coded signal Y1 and Y2. We may

then use Monte-Carlo simulation to calculate the statistics of each

context of each bitplane. In this work, we use four contexts for

bitplane coding and two contexts for sign coding (as signs are only

coded when a coefficient becomes non-zero). The definition and

IV 206

the statistics collected for each context are shown in Table 1 and

Table 2.

Table 1 Context for bitplane in distributed source coding

Bit context definition Statistics collected

sig,sig Ai,j=0, Bi,j=0 p(Vi,j Ui,j,Ai,j=0,Bi,j=0),p(Ai,j=0,Bi,j=0)

sig, ref Ai,j=0, Bi,j≠0 p(Vi,j Ui,j,Ai,j=0,Bi,j≠0),p(Ai,j=0,Bi,j≠0)

ref,sig Ai,j≠0, Bi,j=0 p(Vi,j Ui,j,Ai,j≠0,Bi,j=0),p(Ai,j≠0,Bi,j=0)

ref,ref Ai,j≠0, Bi,j≠0 p(Vi,j Ui,j,Ai,j≠0,Bi,j≠0),p(Ai,j≠0,Bi,j≠0)

Table 2 Context for sign coding in distributed source coding

Sign ctx definition Statistics collected

Sig Ai,j=0, Bi,j≠0 p(Vi,j Ui,j,Ai,j=0,Bi,j≠0),p(Ai,j=0,Bi,j≠0)

Ref Ai,j≠0, Bi,j≠0 p(Vi,j Ui,j,Ai,j≠0,Bi,j≠0),p(Ai,j≠0,Bi,j≠0)

In DSC, the exact contexts are only available to the receiver,

and are not available to the sender. As a result, the context DSC

encoder only uses collective information of the compound channel.

More specifically, for the DSC encoder, we will only need the

channel error rate Ri at bitplane i:

()
() ()

() ()
() ()
() ()

, , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

| , ,

| , 0, 0 0, 0

| , 0, 0 0, 0

| , 0, 0 0, 0

| , 0, 0 0, 0 .

i i j i j i j i j

i j i j i j i j i j i j

i j i j i j i j i j i j

i j i j i j i j i j i j

i j i j i j i j i j i j

R H V U A B

H V U A B p A B

H V U A B p A B

H V U A B p A B

H V U A B p A B

=

= = = ⋅ = = +

≠ = ⋅ ≠ = +

= ≠ ⋅ = ≠ +

≠ ≠ ⋅ ≠ ≠

 (6)

The DSC encoder selects a proper channel code and channel

code rate. The exact context of each bit is provided only to the

DSC decoder, which will use the context information and the

statistics of each context to set the a prior log likelihood (LLR) of

each bit for the turbo or LDPC channel decoder. In short, the LLR

of coefficient j at bitplane i is set to:

, , , ,

, , , ,

(0 | , ,)
(,) log ,

(1 | , ,)

i j i j i j i j

i j i j i j i j

p V U A B
LLR i j

p V U A B

=
=

=
 (7)

We may then proceeds with turbo or LDPC channel decoding

with Belief propagation.

3.2. Turbo vs LDPC based distributed source coding
The channel codes usually considered for DSC are the turbo

codes [4] and the LDPC codes [5]. Turbo code is usually

constructed via the parallel concatenation of two convolutional

codes with an interleaver placed in front of one of the

convolutional codes. The construction of the turbo code is

systematic, and a new turbo code can be readily generated for any

input block length.

In comparison, LDPC code is constructed via a graph linking

two sets of nodes: the variable nodes (holding the information bits)

and the source nodes (holding the parity bits). The two sets are

connected through an edge interleaver. A good LDPC code needs

an edge interleaver that is free of short cycles (at lease length-2 and

length-4 cycles), and the removal of cycles is the primary

computation complexity in LDPC code construction and is very

expensive. Therefore, LDPC code needs to be pre-designed with

input block length. Moreover, when the channel error rate becomes

low, the removal of short cycles becomes difficult to perform. We

can only generate successful interleavers at code rates above 0.1.

We compare the BSC channel code performance of the turbo

and LDPC code, and show the result in Table 3. In the experiment,

we use a simulated BSC channel with error rate Ri being 0.125,

0.25 and 0.5bpp, respectively. We then gradually increase the

channel code rate until all errors can be corrected. We record the

gap between the channel code rate and the actual channel error rate

for turbo and LDPC code, and report the result in Table 3. Larger

gap indicates poor channel code performance. We observe that

LDPC codes always work better than turbo codes. Moreover, the

performance gap between the turbo and LDPC grows larger when

the channel error rate becomes high.

Table 3 channel code performance: turbo vs. LDPC.

Channel error rate Turbo

Loss=R2-H(V|U)

LDPC

Loss=R2-H(V|U)

1/8 0.036 0.034

1/4 0.060 0.038

1/2 0.145 0.037

Based on the above observations, we use the LDPC code for

those bitplanes where the channel error rate is above 0.1, and use

the turbo codes for those bitplanes where the channel error rate is

below 0.1.

3.3. Binary Asymmetric Channel
Existing turbo and LDPC code are designed for BSC channel,

where bit 0 occurs in equal probability to bit 1. However, in

bitplane coding, only the refinement bit is equally probable. The

bit in significant identification is highly skewed towards zero, both

for a prior probability of the reference bit U, and for the transfer

probability towards the coded bit V. This can be shown in Figure

4. We observe that the LDPC-based DSC does not suffer in

performance with regard to the binary asymmetric channel.

However, the performance of the turbo-based SWC suffers

significantly.

U

0

1

0

1

V
2q

1q

11 q−

21 q−

p

p−1

1;21 →≠ pqqU

0

1

0

1

V
2q

1q

11 q−

21 q−

p

p−1

1;21 →≠ pqq

Figure 4. Binary asymmetric channel.

One solution is to re-design the turbo code based on the binary

asymmetric channel, as proposed in [9]. However, this involves

significant work and is not trivial. In this paper, we adopt a simple

solution: we just use a random flipper to transfer the binary

asymmetric channel into a BSC channel. We use a pseudo random

seed which is synchronized between the encoder and decoder to

generate a pseudo random binary stream. This pseudo random

stream is then xored onto the Ui and Vi before they are DSC

encoded. At the time of DSC decoding, the same pseudo random

sequence is xored to the reference bitplane to correct the bias. We

found the use of random flipper greatly improve the DSC

performance of turbo coding. The random flipper is used for all

turbo-based DSC in the experimental results.

4. EXPERIMENTAL RESULTS

We apply the proposed context DSC for distributed audio

coding. We use the experimental setup in Figure 1. The audio

source used in the experiment is obtained from the MPEG sound

quality assessment material [10]. We assume that the original

audio is broadcast by radio, and received by two peers with

uncorrelated AWGN noise of 80dB. Each peer then transform the

audio via the modified DCT transform (MDCT), and then apply a

rate-18 memory-8 TCQ. We want the receiving peers to recover

the original audio X at 80.6dB. Calculation shows that this can be

achieved by TCQ quantizing each source with quantization step

size 5.6.

IV 207

Table 4 Separate source coding and distributed source coding:

without and with context.

 No context

coding

Context

coding

Gain by

context

coding

Separate source coding 7.79 6.38 18.10%

Distributed source coding 6.24 4.83 22.60%

DSC saving 19.90% 24.29% Overall=38%

We first compare the separate source coding and DSC, both

with and without context coding. The results are shown in Table 4.

We show that the context modeling is a powerful technology in

both source coding and DSC. It achieves a rate reduction of 18%

in the source coding, and achieves a rate reduction of 23% in DSC.

The performance of DSC without context modeling is only 2%

better than the separate source coding with context modeling.

However, applying context modeling in DSC, we may achieve an

additional saving of 22%, and allow DSC to beat separate source

coding significantly.

0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

BP#

ra
te

 s
a
v
in

g
 (

b
/s

)

06.0=SR

DSC

SEP

BPSign

Figure 5 Saving of distributed source coding: bitplane result.

Our entropy analysis also shows that the saving of DSC is

highly non-uniform across the bitplanes. We show the rate saving

of each bitplane of using DSC vs. separate source coding (both

with context modeling) in Figure 5. The horizontal axis is the

bitplane index, the vertical index is the DSC rate saving in bit per

symbol (bps). We observe that the DSC rate saving is small (below

0.06bps) in bitplanes 0 and 7-16. At most significant bitplanes, the

correlation between the bitplanes is strong. However, the entropy

of the bitplanes is very low. As a result, the DSC saving is low in

bps as well. Because it is difficult to do DSC at low channel error

rate, we will simply use separate source coding for those bitplanes.

At bitplane 0, the correlation of the two bitplanes is weak.

Therefore, DSC does not provide much saving either. As a result,

we decide to apply DSC only to bitplanes 1-6 and the sign

bitplane. Our decision results in a total rate loss of 0.18bps, which

is about 3% of the coding bitrate of separate source coding.

 To implement DSC practically, we need to select a proper

channel code and code parameter based on the entropy analysis

above. Following the discussion in Section 3.2, we apply LDPC

code to the bitplanes 1 and 2, where the compound virtual channel

error rate is above 0.1 bps. We apply turbo code to the bitplanes 3-

6, where the compound virtual channel error rate is below 0.1bps.

The DSC code and code parameters used for each bitplane coding

of our experiment can be found in Table 5.

Table 5 SWC code selection and code parameter.

BP# H(V|UAB) Channel Code Bit rate Rate loss

17 0.307486 0.38-LDPC 0.336453 0.028967

6 0.001819 140/141-Turbo 0.007143 0.005324

5 0.005725 46/47-Turbo 0.021739 0.016014

4 0.015694 21/22-Turbo 0.047621 0.031927

3 0.041432 12/13-Turbo 0.083333 0.041901

2 0.108174 0.85-LDPC 0.15 0.041826

1 0.268990 0.7-LDPC 0.3 0.031010

SUM 0.749320 - 0.946289 0.196969

In Table 5, there is always a performance gap between the

channel error rate and the channel code rate. The performance gap

is due both to the design of the channel code (only a number of

channel code profiles can be pre-designed) and due to the

requirement to achieve zero-error in channel decoding in DSC. We

observe a further rate loss of 0.2bps, or 3% in practical DSC

implementation. Overall, our practical DSC audio coding system

achieves a total rate of 5.21bps, which represents an 18% rate

saving compared with separate coding of the source. Because one

path of DSC is exactly the same as separate source coding, the

DSC path actually achieves a rate saving of 36% compared with

separate source coding.

5. CONCLUSIONS

We introduce context modeling to DSC and develop practical

DSC design that switch between turbo and LDPC-based DSC.

Context DSC achieves a rate saving of 36% compared with

separate source coding.

REFERENCES

[1] S. Pradhan, J. Kusuma, and K. Ramchandran, “Distributed

compression in a dense microsensor network,” IEEE Signal

Processing Magazine, vol. 19, pp. 51-60, March 2002.

[2] Z. Xiong, A. Liveris, and S. Cheng, “Distributed source

coding for sensor networks,” IEEE Signal Processing Magazine,

vol. 21, pp. 80-94, September 2004.

[3] D. Slepian and J.K. Wolf, “Noiseless coding of correlated

information sources,” IEEE Trans. Info. Theory, vol. 19, pp. 471-

480, July 1973.

[4] C. Berrou and A. Glavieux, “Near optimum error correcting

coding and decoding: turbo-codes,” IEEE Trans. Comm., vol. 44,

pp. 1261-1271, October 1996.

[5] R. Gallager, Low Density Parity Check Codes, MIT Press,

1963.

[6] A. Aaron and B. Girod, “Compression with side information

using turbo codes,” Proc. DCC’02, Snowbird, UT, April 2002.

[7] A. Liveris, Z. Xiong and C. Georghiades, “Compression of

binary sources with side information at the decoder using LDPC

codes,” IEEE Comm. Letters, vol. 6, pp. 440-442, October 2002.

[8] J. Rissanen, “A universal data compression system”, IEEE

Trans. Info. Theory, vol. IT-29, pp.656-664, Sept. 1983.

[9] J. Li, Z. Tu, and R.S. Blum, “Slepian-Wolf Coding for

Nonuniform Sources Using Turbo Codes,” Proc. DCC’04,

Snowbird, UT, March 2004.

[10] “Sound quality assessment material recordings for subjective

tests”, http://www.tnt.uni-hannover.de/project/mpeg/audio/sqam/.

IV 208

