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ABSTRACT

A new efficient method is developed for optimal maximum likeli-
hood (ML) decoding of an arbitrary binary linear code based on data
received from a Gaussian channel. The decoding algorithm is based
on minimization of a difference of two monotonic objective func-
tions subject to the 0-1 constraint of bit variables. The iterative pro-
cess converges to the global optimal ML solution after a finite num-
ber of steps. The proposed algorithm’s computational complexity
depends on the input sequence length k which is much less than the
codeword length n, especially for codes with small code rates. The
viability of the developed method is verified through simulations on
different coding schemes.

1. INTRODUCTION

One of the fundamental problems in communications is to construct
an encoding and a decoding systems for reliable communication over
a noisy channel. In the early 1960s, Gallager invented a class of
Low-Density Parity-Check (LDPC) codes [3]. Their subsequent re-
discovery was made by Mackay et al in [4], which has generated con-
siderable attention within the coding community. The most popular
technique for suboptimal decoding is the belief propagation (BP) al-
gorithm (see e.g. [5]), where messages are iteratively passed across
a factor graph modeling the structure of the code. When the factor
graph contains cycles, BP may not propagate the whole graph and so
locates a solution which may not even be locally optimal. Yuille [9]
proposed a discrete iterative algorithm called concave-convex pro-
cedure (CCCP) to find a local minimum of the Bethe free energy
which corresponds to the fixed point of BP. The CCCP decomposes
the free energy into concave and convex parts, which are also widely
known in the global optimization community as d.c. (difference of
two convex functions) representation of the free energy [6], and lo-
cally decreases the free energy by the classical Frank and Wolf al-
gorithm [2]. Recently, Feldman et al. [1] introduced Linear Pro-
gramming (LP) relaxation for the ML decoding. This involves mini-
mizing a linear function over a well-constructed codeword polytope.
However, the complexity of the polytope representation increases
prohibitively when the size of the encoder increases moderately.

In this paper, we develop a practically efficient method to solve
the exact ML decoding for an arbitrary binary linear code, using the
discrete monotonic optimization [7, 8]. First, the modulo 2 oper-
ation is re-expressed as a continuous function on the conventional
linear finite dimensional space. The objective function of our global
optimization problem is then re-written as a d.m. (difference of two
monotonic functions) function. As far as the globally optimal so-
lution of the discrete optimization is concerned, there are several

advantages of using the monotonic optimization [7, 8] over partial
convex (like d.c.) optimization [6]: (i) the monotonicity or partial
monotonicity of functions are more easily recognizable than their
partial convexity; (ii) over a box, since monotonic functions attain
its optimal points at one of its smallest and largest vertices, by us-
ing the functions’ partial monotonicity instead of partial convexity,
it is less computationally consuming to compute its bounds; (iii) the
monotonic optimization based algorithm is finite, yielding the exact
global optimal solution [8], while partial convexity based optimiza-
tion finite algorithm yields only an approximate optimal solution
with a prescribed tolerance [6]. Although our approach can work
well for other discrete optimizations arising from decoding and de-
tection such as multi-user detection in CDMA and other integer least
square problems, we will focus in this paper only on solution method
for decoding linear codes. It is interesting to note that our d.m. rep-
resentation is the most efficient for LDPC codes as shown by both
theory and simulation.

The paper is organized as follows. In Section 2, the formula-
tion of the ML problem using monotonic optimization is presented.
Then, an appropriate global optimization algorithm for ML decod-
ing is developed in Section 3. Experimental results come in Section
4, followed by the conclusion.

The notations used in the paper are as follows. An input bit
sequence u and codeword x are column vectors. Throughout this
paper, the generator matrix G of LDPC is of size n × k with rows
{gi} ∈ {0, 1}k (so the transmission redundancy is n − k bits). For
simplicity, G⊕2u denotes Gu (mod 2) and so the set of codewords
generated by the generator matrix G is defined as

C = {x ∈ {0, 1}n| x = G ⊕2 u, u ∈ {0, 1}k}.

We define the box [a, b] ∈ Rk as the set of all x ∈ Rk such that
ai ≤ xi ≤ bi, i = 1...k.

2. ML DECODING WITH MONOTONIC OPTIMIZATION

This section describes the formulation of the ML decoding problem
for an arbitrary linear code using discrete monotonic optimization.

2.1. Optimal ML Decoding

Consider a communication system with an (n, k) block code repre-
sented by a generator matrix G and the Binary Phase Shift Keying
(BPSK) modulation scheme. That is, the modulator maps the bi-
nary symbol xi ∈ {0, 1} to the signal constellation vi ∈ {+1,−1}
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according to the rule:

vi =

�
+1 xi = 1
−1 xi = 0.

Let u, x be the input bit sequence and the corresponding encoder
output codeword respectively, i.e. x = G ⊕2 u. The codeword x is
then modulated before being transmitted over the AWGN (additive
white Gaussian noise) channel. Then the received vector is ỹ =
v + n = (2x − 1) + n, where n is Gaussian noise vector with zero
mean and variance δ2I .

Given the received signal ỹ, the ML detector attempts to estimate
the codeword x̃ which maximizes the likelihood function P(ỹ|x).
Based on the generator matrix G, the direct ML criterion for detec-
tion of ũ is the following optimization problem

ũ = arg min
u∈{0,1}k

{||(2(G ⊕2 u) − 1) − ỹ||2} (1)

which is an integer least squares problem under modulo 2 constraints.
Note that, in general, an integer least squares problem alone is NP-
hard, i.e. an exhaustive search to evaluate all the 2k possible bit
sequences may be needed to detect the optimal solution ũ. Our aim
is to develop a practically efficient algorithm for the optimal solution
of this difficult optimization problem. Details of our algorithm are
introduced next.

2.2. Discrete Monotonic Optimization

The central idea of our proposed method is to optimize a suitable
d.m. objective function. Therefore, firstly, the involved modulo 2
operation needs to be properly re-arranged as a conventional one,
acting on the linear finite dimensional space, making it possible to
write the objective function f(u) as a d.m. function. One way to
handle the modulo 2 constraints is to express

G ⊕2 u =
1 − cos(πGu)

2

which is a continuous function for u ∈ [0, 1]k.
Now, the objective function f(u) = ||(2(G ⊕2 u) − 1) − ỹ||2

in (1) can be readily written as

f(u) = || − ỹ − cos(πGu)||2.
Consequently, the problem (1) is equivalent to

ũ = arg min
u∈{0,1}k

{
n�

i=1

ỹi cos(πgiu)}.

With the definition I− = { i | ỹi < 0} and I+ = { i | ỹi > 0}, we
express f(u) by

f(u) =
�
i∈I+

|ỹi| cos(πgiu) −
�
i∈I−

|ỹi| cos(πgiu)

= f+(u) − f−(u) (2)

where

f+(u) =

n�
i=1

|ỹi|2�giu

2
� +
�
i∈I+

|ỹi| cos(πgiu)

f−(u) =

n�
i=1

|ỹi|2�giu

2
� +
�
i∈I−

|ỹi| cos(πgiu)

(3)

which are increasing functions with respect to the variable u ∈ {0, 1}k.
We now reduce the original modulo 2 constrained integer least

square optimization problem (1) to the following optimization prob-
lem

min
u

f+(u) − f−(u) s.t. u ∈ {0, 1}k (4)

which belongs to the family of d.m. optimization [7, 8].
Our next section is devoted to an effective algorithmic devel-

opment toward the solution of (4) by exploring more combinatoric
nature of 0 − 1 variables.

3. GLOBAL OPTIMIZATION FOR ML DETECTION

Note that the constraint in (4) is the same as

u ∈ [a, b] ∩ S∗ (5)

where a = 0 ∈ �k
+, b = [1, . . . , 1]T ∈ �k

+ and S∗ = {0, 1}k the
vertex set of [a, b].

To solve the optimization problem (4) under the constraint (5)
globally, we adapt the Branch-Reduce-and-Bound (BRB) strategy of
[8]. It involves in each iteration three basic operations: branching,
reduction, and bounding which are developed in three subsequent
subsections.

3.1. Branching

A partition set has the form M = [p, q] such that for some I ⊂
{1, . . . , k} and J ⊂ {1, . . . , k} \ I :

M = {u ∈ �k
+| 0 ≤ ui ≤ 1 (i ∈ I),

ui = 0 (i ∈ J), ui = 1 (i /∈ I ∪ J)}.

Therefore, it is convenient to write M = [p, q]I,J , where I ⊂
{1, . . . , k}, J ⊂ {1, . . . , k} \ I. The partition of M is performed
as follows: select an index k ∈ I and divide M into M− = {u ∈
M | uk = 0} and M+ = {u ∈ M | uk = 1}.

It can be easily seen that the branching step does not leave out
any potential solution for (4) since M∩S∗ = M−∩S∗+M+∩S∗.

3.2. Reduction

If M = [p, q]I,J and the Current Best Value (CBV) is γ, then we are
interested in only those u ∈ M ∩ S∗ satisfying

f+(u) − f−(u) ≤ γ (6)

because those not satisfying (6) are definitely not the optimal solu-
tion.

Proposition 1. There exists a point u ∈ M satisfying (6) only if

f+(p) ≤ f−(q) + γ. (7)

Any such x is contained in the subset redγ [p, q] := [p′, q′] ⊂ [p, q]
where

• For box [p, q], and I = {i ∈ I : pi = 0, qi = 1},

p′
i =

���
��

pi = qi i /∈ I

0 f−(q − ei) + γ ≥ f+(p)

1 f−(q − ei) + γ < f+(p)

(8)
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• For box [p′, q], and I ′ = {i ∈ I : p′
i = 0, qi = 1},

q′i =

���
��

p′
i = qi i /∈ I ′

1 f+(p′ + ei) ≤ f−(q) + γ

0 f+(p′ + ei) > f−(q) + γ

(9)

Proof. Firstly, we show that

{u ∈ [p, q] : f+(u) − f−(u) ≤ γ} ⊂ [p′, q]. (10)

Indeed, if u ∈ [p, q] and u � p′ then there is i ∈ I such that ui = 0

and p′
i = 1 and also according to (8), f−(q − ei) < f+(p) − γ.

Then f−(u) ≤ f−(q − ei) < f+(p) − γ ≤ f+(u) − γ, i.e.
f+(u) − f−(u) > γ, showing (10).

Secondly, we show that

{u ∈ [p′, q] : f+(u) − f−(u) ≤ γ} ⊂ [p′, q′]. (11)

Now, if u ∈ [p′, q] but u � q′ then there is i ∈ I ′ such that ui =

1 and q′i = 0 and according to (9), f−(q) + γ < f+(p′ + ei)
and p′

i = 0. The latter particularly implies p′ + ei ≤ u as well.
Then f−(u) ≤ f−(q) < f+(p′ + ei) − γ ≤ f+(u) − γ, i.e.
f+(u) − f−(u) > γ, showing (11).

The following corollary summarizes our reduction strategy.

Corollary 1. If f+(p) > f−(q) + γ then M can be fathomed.
Otherwise, M can be replaced by its valid reduction [p′, q′] without
losing any better feasible solution than the current best.

3.3. Bounding

For M = [p, q]I,J , we compute a number µ(M) such that

µ(M) ≤ ρ(M) = min
u∈M∩S∗{f

+(u) − f−(u)}.

To ensure convergence, this lower bound must be consistent in the
sense that for any infinite nested sequence of boxes Mkv shrinking
to a single point u∗,

lim
v→∞

µ(Mkv ) = f(u∗).

Of course, the efficiency of an algorithm depends on the used bound-
ing techniques. With d.m representation (2) intact, the less compu-
tationally consuming but efficient enough lower bound is

µ(M) = f+(p) − f−(q). (12)

Note that if M is the partition set with smallest ρ(M) among all
partition sets still under consideration in the current iteration of the
BRB algorithm, then ρ(M) is the optimal value of the problem, i.e.
u such that ρ(M) = f+(u)−f−(u) is the globally optimal solution.

3.4. Branch-Reduce-and-Bound Algorithm

Now, having the branching, reduction and bounding developed in the
previous subsections, the BRB algorithm [8] adapted to the solution
of (4), (5) is as follows.

Initialization. Let P1 = {M1}, M1 = [a, b], R1 = ∅. If some
feasible solutions u are available let CBV = f(u) at the best of
them (current best value). Otherwise, set CBV = ∞. Set k = 1.

Step 1. Apply the reduction rule for each box [p, q] ∈ Pk. In
particular, delete any box [p, q] such that f+(p) > f−(q)+ γ for

γ = CBV . Let P ′
k = {[p′, q′] = redγ [p, q] : [p, q] ∈ Pk}. Then,

takes the smaller of f(p′) or f(q′) if possible for updating CBV.
Step 2. For each box M = [p′, q′]I

′,J′ ∈ P ′
k, compute a

bound µ(M) by (12). If there is u such that µ(M) = ρ(M) =
f+(u) − f−(u), then u and µ(M) are the optimal solution and
optimal value respectively of the problem in the box M under
consideration. Then, we can use µ(M) as an update for the
CBV .

Step 3. Let Sk = Rk ∪ P ′
k. Delete every M ∈ Sk such

that µ(M) > CBV and let Rk+1 be the collection of remaining
boxes.

Step 4. If Rk+1 = ∅ then terminate. CBV is the optimal
value and the feasible solution ũ with f(ũ) = CBV is the opti-
mal solution.

Step 5. If Rk+1 �= ∅, let Mk ∈ arg min {µ(M)| M ∈ Rk+1}.
Divide Mk into two boxes according to the branching rule. Let
Pk+1 be the collection of these two sub-boxes of Mk.

Step 6. Increment k and return to Step 1.

Theorem 1. For our problem (4), BRB algorithm terminates after
finitely many iterations, yielding an globally optimal solution of the
problem.

Remarks. A linear systematic (k, n) LDPC code can be repre-
sented as a generator matrix G = [Ik Pk×(n−k)]

T where Ik is the
identity matrix of size k. Instead of starting the algorithm with the
largest box [0, 1]k as described above, we can possibly detect some
bit variables after examining the observed output ỹ by the following
steps:

• For i = 1 . . . k, let ũi be such that

ũi =

�
1 ỹi ≥ 0
0 ỹi < 0.

• Let S be the set of indices such that S = S1

�
S2 where

S1 = {i | ỹi < 0, cos(πgiũ) �= 1, i = (k+1), . . . , n} and
S2 = {i | ỹi ≥ 0, cos(πgiũ} �= −1, i = (k + 1), . . . , n}.

• Set G̃ = {gi} whose rows are rows {gi}, i ∈ I of G.

• Set ãi = b̃i = ũi if column ith of G̃ contains no 1’s.

For LDPC codes, due to small fraction of 1’s in G, more input
bits are likely to be resolved in the final step. Therefore, the algo-
rithm can initially start with the tigher box [ã, b̃].

4. EXPERIMENTAL RESULTS

This section provides numerical results obtained from running the
BRB algorithm for different coding schemes, where k − n

.
= (k, n)

linear codes. The proposed algorithm is simulated in the C program-
ming environment on a PC with CPU 3.0 Ghz. The generator matrix
G is full rank and randomly generated with a small fraction of 1’s.
The two high rate codes are systematic. The Bit-Error-Rate curves
for different codes are plotted against the Eb/No where Eb, No are
bit energy and noise power spectral density, respectively. The aver-
age running time and the average number of iterative loops for each
trial are also tabled. The BERs of random rate 1/4 codes are similar
to those presented in [1]. For codes with special properties, the av-
erage processing time and running loops do not increase noticeably
when k increases due to the two reasons: (i) the convergence rate
to the optimal point is faster when Eb/No is larger as the result of
tigher bounding calculations. This leads to more useless boxes being
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Fig. 1. Bit-Error-Rate performance of different codes

3 4 5 6

9-36 20.3247 19.1866 18.2872 17.5104
15-60 434.6903 428.6563 399.597 397.1853
20-30 109.35729 70.97733 38.83573 20.95469
25-35 157.344 130.200 95.408 89.02946

Eb/No
Codes

Table 1. Average iterations for each trial

deleted in step 3 of the algorithm; (ii) by the structure of system-
atic codes, most bits can be determined as mentioned in Remarks.
Therefore, it takes a significantly small number of loops for each
trial.

5. CONCLUSION

We have described the method ML decoding for Gaussian chan-
nels using 0 − 1 monotonic optimization. The technique can also
be applied for other common channels i.e. binary symmetric chan-
nel, binary erasure channel etc but with different objective functions.
The proposed algorithm complexity depends on the input sequence
length k which is much less than the codeword length n, especially
for a coding scheme with a small code rate.

3 4 5 6

9-36 0.01157 0.01100 0.01064 0.01015
15-60 0.54700 0.53589 0.52536 0.51854
20-30 0.12514 0.08278 0.04582 0.02515
25-35 0.57943 0.41833 0.26591 0.15192

Eb/No
Codes

Table 2. Average running time (in second) for each trial
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