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ABSTRACT

In this paper, the sensitivity of the high-rate performance of con-

ventional source coding to symmetric channel errors (i.e., a channel

where all index errors are equally likely) with arbitrary distortion

measures is analyzed. It is shown that, in general, the overall dis-

tortion due to source quantization and channel errors cannot be ex-

pressed as the sum of the distortion due to the finite bit representation

of the source and the distortion due to channel errors. An exception

to this is when the distortion is measured as the mean-squared error.

The binary symmetric channel with random index assignment is a

special case of the analysis, and as the number of code-points gets

large, the performance approaches a nonzero constant. Finally, the

framework is applied to the wideband speech spectrum quantization

problem, where it correctly predicts the channel error rate permissi-

ble for operation at a particular distortion level.

1. INTRODUCTION

The performance of a source quantization scheme can be very sen-

sitive to errors introduced when the codepoint index is transmitted

over a noisy channel, because the quantization process typically in-

volves removing the redundancy in the source and encoding only the

non-redundant part. For example, speech is typically compressed

using a highly efficient vector quantization (VQ) scheme prior to

transmission over a noisy channel, and the resulting indices could be

very sensitive to errors in the channel over which they are transmit-

ted. Hence, the performance of VQ when the index is sent over a

noisy channel is pertinent, if they are to be used in practical commu-

nication systems.

Past works on VQ for noisy channels have adopted one of two

approaches. The first is to replace the distortion measure used for

optimizing the quantizer with the expected distortion over the noisy

channel (e.g., [1] - [3]). The second approach involves index as-
signment, i.e., designing the quantizer without considering channel

errors and then coding the indices to ensure that codeword pairs re-

sulting in small (large) distortions are mapped to index pairs with

large (small) transition probability (e.g., [4], [5]). Other recent works

on source quantization for noisy channels include [6] and [7]. Most

of the works in the literature employ the mean-squared error as the

distortion function. However, more general distortion measures are

considered here (such as Log Spectral Distortion in wideband speech

spectrum quantization) and the performance of source compression

under channel errors is examined.
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In the sequel, based on classical results from the source coding

literature [8] - [11], a novel technique is developed to analyze the ef-

fect of errors on the performance of source coding with arbitrary dis-

tortion measures for symmetric error channels (channels for which

all index errors are equally likely). Clearly, it would be convenient if

the overall distortion could be decomposed as the sum the distortion

due to the source encoder and the distortion induced by channel er-

rors. It is shown that while this decomposition is possible when the

distortion is measured as the mean-squared error, in general there

is an interdependence between the source and channel errors. The

analysis presented in this paper characterizes this interdependence

for the case of symmetric error channels.

2. PRELIMINARIES

The system model considered in this paper is as follows. Let x ∈
Dx ⊂ R

n be a random source with pdf fx(x), where Dx is the

domain of x. The non-negative, twice continuously differentiable

function d(x, x̂i) measures the distortion resulting from represent-

ing x as x̂i. A VQ encoder is described by N partition regions

Ri, 1 ≤ i ≤ N that tile Dx. Associated with each partition region

Ri is a code-vector x̂i. In the case of the Lloyd centroid quantizers

[10] considered in this paper, x̂i is the centroid of the random vector

x conditioned on x ∈ Ri under the distortion measure of interest;

and Ri = {x : d(x, x̂i) ≤ d(x, x̂j), 1 ≤ j ≤ N}. Note that the

definitions of x̂i and Ri depend on each other, which means that,

in practice, iterative algorithms are employed to generate a locally

optimal codebook and a corresponding set of quantization regions.

Whenever x ∈ Ri, the quantizer outputs index i, which is

mapped to a point in some constellation and sent over a noisy chan-

nel. At the receiver, a possibly different index j is received with

probability Pj|i, and the receiver outputs x̂j .

2.1. Symmetric Error Channels

In this paper, the channel is modelled as a symmetric error channel,

i.e., a channel where all index errors are equally likely. This chan-

nel model leads to tractable, closed-form expressions for the overall

performance, thus enabling one to compare (and trade off) the distor-

tion due to the source quantization and the distortion due to channel

errors. In case of the symmetric error channel, the transition prob-
ability Pj|i, which is the probability that the transmitted index i is

received as index j, is given by

Pj|i =

j
a(N), j �= i

1 − (N − 1)a(N), j = i
, (1)
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where 0 ≤ a(N) ≤ 1/(N − 1) is the probability that index i is

received as a different index j. From a practical perspective, it is

also reasonable to expect a(N) < 1
N

, which ensures that Pi|i =
max1≤j≤N Pj|i holds.

Note that under this set-up, Pi|i = 1−(N−1)a(N) is the prob-

ability of correct reception. This implicitly assumes that as N is in-

creased, more (or less) energy is used to transmit the symbol in order

to maintain the probability of correct reception Pi|i. An example for

the symmetric error channel is when the index is sent using orthog-

onal modulation over an AWGN channel. Another example is when

the channel is a binary symmetric channel (BSC) with bit cross-over

probability q and the assignment of the indices to the B = log2(N)
bit words is random. It can be shown that after averaging over all

possible index assignments, the probability of correct reception is

Pi|i = (1 − q)B , and thus a(N) =
“
1 − (1 − q)B

”
/ (N − 1).

3. PERFORMANCE ANALYSIS

In this section, the high-rate performance of VQ for the case of

symmetric-error channels is stated; the proof is relegated to [12] as

it is rather lengthy. The expected distortion is given by

Ed =

NX
i,j=1

Pj|i

Z
x∈Ri

d(x, x̂j)fx(x)dx (2)

For the result to follow, the standard high-rate approximations in [8,

10], and the quantization cell approximation in [11] are employed.

The high-rate performance expression is in terms of the continuous

point density function λ(x), which is defined such that λ(x)∆x
is approximately the fraction of codepoints in a small region ∆x
around x. For an optimal VQ, the quantization cell Ri is well ap-

proximated by a corresponding n-dimensional hyper-ellipsoid with

the volume (Nλ(x̂i))
−1

, and whose shape is determined by the Hes-

sian of the distortion function at x̂i. Under these approximations, it

is possible to show that

Ed =

Z
x

Ed,xfx(x)dx (3)

where, Ed,x, the expected distortion conditioned on the source in-

stantiation x, is given by

Ed,x ≈Na(N)

jZ
y

d(x,y)λ(y)dy

+
N

−2
n κ

−2
n

n

2(n + 2)
λ

−2
n (x) |D(x,x)| 1

n

· tr

„
D−1(x,x)

»Z
y

(D(x,y) − D(x,x)) λ(y)dy

–«ff

+
nN

−2
n κ

−2
n

n

2(n + 2)
λ

−2
n (x) |D(x,x)| 1

n , (4)

where κn is the volume of an n-dimensional unit sphere, and D(x,y)
is an n × n sensitivity matrix with j, k-th element Dk,j(x,y) =
∂2d(x̂,y)
∂x̂j∂x̂k

˛̨
˛
x̂=x

. Note that the last term is the asymptotic distortion in

the absence of channel errors (i.e., when a(N) = 0). Also, the first

term inside the curly braces represents the distortion caused by the

channel errors only, and the second term characterizes interdepen-

dence of the channel errors and the source quantization errors. Thus,

unless
R
y

(D(x,y) − D(x,x)) λ(y)dy = 0, the distortion cannot

be split as the sum of the distortion due to source encoding and the

distortion due to channel errors.

3.1. Mean-Squared Error Distortion

Consider the special case where d(x,y) = ‖x − y‖2 is the mean-

squared error function. Then, D(x,y) = 2In regardless of x and y,

thus, the second term in (4) vanishes. Let (mx, σ2
x) and (my, σ2

y) be

the mean vector and the trace of the covariance matrix of a random

vector with probability density fx(x) and λ(x) respectively. When

d(x,y) = ‖x − y‖2, it is easy to show that

Z
x

d(x,y)fx(x)dx = σ2
x + ‖y − mx‖2. (5)

A similar expression can be obtained by replacing fx(x) in the above

expression by λ(x) and making corresponding changes in the right

hand side. Substituting in (4) and simplifying,

Ed ≈ Na(N)
`
σ2
x + σ2

y + ‖my − mx‖2´

+
nN

−2
n κ

−2
n

n

n + 2

Z
x

λ
−2
n (x)fx(x)dx. (6)

Thus, with MSE as the performance metric, the overall distortion

splits as two terms: the first term measures the distortion arising

purely due to channel errors, and the second term measures the dis-

tortion due to the source encoding. This is in agreement with the

result in [13], where the authors proved, for a scalar source, that the

distortion can be separated into two terms as above.

3.2. Conventional Source Coding with Channel Errors

In this subsection, the sensitivity of conventional source coding to er-

rors caused by the symmetric-error channel is analyzed. Convention-

ally (i.e., in the absence of channel errors), the point density function

λ(x) is chosen to minimize the last term in (6), i.e.,

λconv(x) = arg min
λ(x)

nN
−2
n κ

−2
n

n

n + 2

Z
x

λ
−2
n (x)fx(x)dx

=
f

n
n+2
x (x)R

x
f

n
n+2
x (x)dx

(7)

The last equation is obtained by applying Hölder’s inequality the

optimization problem, and can be found in many sources, e.g., [9].

With the above point density, the expected MSE distortion can

be obtained by substituting for λconv(x) in (6) as

Ed ≈ Na(N)
`
σ2
x + σ2

y + ‖my − mx‖2´

+
nN

−2
n κ

−2
n

n

n + 2

„Z
x

f
n

n+2
x (x) dx

« n+2
n

. (8)

It is interesting to note that, as N increases, the distortion is domi-

nated by the behavior of Na(N) relative to N
−2
n . That is,

1. If Na(N) = o
“
N

−2
n

”
, channel errors play an insignificant

role in the asymptotic distortion.

2. If N
−2
n = o (Na(N)), the error is dominated by the channel

errors (i.e., the first term above). For example, when the in-

dex is sent over a BSC with bit error probability q, for large

N , Na(N) → 1, and hence the error approaches the non-

zero constant Ed ≈ `
σ2
x + σ2

y + ‖my − mx‖2
´
. Thus, the

source and point densities only appear in the asymptotic dis-

tortion through its means and variances.
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3. If Na(N) = Θ
“
N

−2
n

”
, then both terms decrease at the

same rate as N increases, so neither component dominates at

high rates.

As an example, consider the case where x is an n-dimensional i.i.d.

uniformly distributed random vector with each entry uniformly dis-

tributed on [−0.5, 0.5). Then, mx = 0 where 0 is a vector of ze-

roes, and σ2
x = n/12. Also, it can be verified that λconv(x) is an

n-dimensional i.i.d. uniformly distributed density with each entry

uniformly distributed on [−0.5, 0.5). Then,

Ed ≈ nNa(N)

6
+

nN
−2
n κ

−2
n

n

n + 2
(9)

When n = 1 (scalar quantization) and the channel is a BSC, the

above expression agrees with an asymptotic result derived in [7].

4. SIMULATION RESULTS

For simplicity, first consider a source x that is i.i.d. and uniformly

distributed on [−0.5, 0.5), with mean squared error as the perfor-

mance metric. Assume that the channel is a BSC with bit cross-over

probability q and that the index assignment is random. To verify the

sensitivity of the performance of VQ to channel errors, the conven-

tionally optimized codebook is generated using the Lloyd algorithm

[10] for different values of n (number of dimensions) and B in the

absence of channel errors. For training the Lloyd algorithm, as well

as for evaluating the performance, 10,000 independent random in-

stantiations of x were employed.

Figure 1 shows the MSE distortion versus the number of quan-

tized bits B for the uniformly distributed random vector with dimen-

sion n = 1, 2, 3 and 4. The theoretical distortion is given by (9), with

a(N) =
“
1 − (1 − q)B

”
/ (N − 1), and bit transition probability

q = 10−3. From the bottom curve (n = 1), notice that as B is in-

creased, the overall distortion initially decreases due to better source

quantization, and later starts to increase again as the effect of chan-

nel errors increases. Asymptotically, the distortion approaches the

fixed constant σ2
x + σ2

y = 1/6. Figure 2 shows the MSE distortion

versus q, with B = 5, or N = 32 quantization levels. For small val-

ues of q, the distortion with N = 32 is dominated by the distortion

caused by quantization errors (i.e., the second term in (9)), whereas,

as q increases, the first term gets larger and the distortion finally ap-

proaches n(1 − 0.5B)/6. Figure 3 shows the distortion caused by

channel errors only, denoted E
(1)
d , which from (9), is given by

E
(1)
d ≈

nN
“
1 − (1 − q)B

”
6 (N − 1)

. (10)

The above equation gives the rate at which E
(1)
d approaches n/6 for

a given q, as B increases. It is also instructive to observe the number

of bits B at which the high-rate approximations become accurate.

A good rule-of-thumb in source coding is that the high-rate results

apply at about 2-3 bits per dimension when the channel is error-

free. This is seen, for example, by examining the error-free curves

plotted in figure 1. With channel errors, however, both the E
(1)
d

and the E
(3)
d terms must converge to their theoretical values as B

increases. From figure 3, a good rule-of-thumb for the convergence

of the E
(1)
d term is about 3-4 bits per dimension, slightly higher than

the corresponding number for the E
(3)
d term.

Next, an experiment is performed on wideband speech spectrum

coding, under the Log Spectral Distortion (LSD) measure. The goal
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Fig. 1. MSE distortion versus number of quantized bits B, for a

uniformly distributed random vector and index sent over the BSC

with q = 10−3. The curves correspond to n = 1, 2, 3, 4, from

bottom to top.
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Fig. 2. MSE distortion for a uniformly distributed random vector

with the conventional point density and B = 5. The index is sent

over a BSC with bit transition probability q (the x-axis). The curves

correspond to n = 1, 2, 3, 4 from bottom to top.

in this context is to achieve an average distortion of 1dB2. This ex-

periment is designed to determine at what error rates this goal is

feasible. A database of 16-dimensional wideband speech spectrum

vectors is gathered, and their sensitivities are evaluated using the

method described in [11]. For sources with such a large dimension,

the codebook sizes become very large (around 50 bits must be used).

This rules out the use of full-search quantizers, and structured sys-

tems must instead be used to reduce the complexity. To this end, the

Gaussian Mixture Model (GMM) based VQ described in [14] is em-

ployed. This system is able to operate with a low, rate-independent

complexity, although it is suboptimal in the sense that its cells are

not ellipsoidal; and as a result there is a small gap between the theo-

retical and experimental distortion curves.
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Fig. 3. The MSE distortion term E
(1)
d for a uniformly distributed

random vector versus B with q = 10−3. The curves correspond

to n = 1, 2, 3, 4 from bottom to top, and the theoretical curves are

generated using (10).

1 2 3 4 5 6 7 8 9 10

10
−4

10
−2

10
0

Bits per dimension

L
o
g
 s

p
e
ct

ra
l d

is
to

rt
io

n
 (

d
B

2
)

simulation
theory

P
e
 = 0

P
e
 = 0.0001

P
e
 = 0.001

P
e
 = 0.01

Fig. 4. Log Spectral Distortion on Wideband Speech LSF vectors

versus B. Both predicted and actual distortions are shown for several

values of Pe, the total probability of an index error.

Since the source density is unknown, the expectations in (3) and

(4) must be evaluated via a Monte-Carlo method. The point density

of the quantizer is itself a GMM, with parameters specified through

the training process. Thus, the integral in (4) over y can be approx-

imated by averages over data y drawn randomly according to the

point density. A database of 65000 source vectors xi is employed,

along with a database of 65000 “error” vectors yi, drawn accord-

ing to λ(y) for the Monte-Carlo estimation. From figure 4, it can

be seen that the theory is good at predicting the true high-rate dis-

tortion. Observe that for high values of the error probability, it is

impossible to perform high-quality quantization of this source, with

the error levelling off at around 3dB2. For moderate error probabil-

ities, 1dB2 LSD can be achieved, although a few extra bits will be

required to compensate for channel errors. At low values of the error

probability, there is no penalty, as the channel effects do not become

significant until well beyond the desired 1dB2 operating point. Thus,

a channel error probability between 0.001 and 0.0001 is judged to be

permissible for the wideband speech spectrum quantization problem.

In conclusion, this paper considered the source quantization prob-

lem when the index is sent over a noisy channel before being used

to reproduce the source at the receiver. For the special case of the

symmetric-error channel, the asymptotic performance with arbitrary

distortion functions was theoretically analyzed. Further, when the

distortion is measured as the MSE, it was demonstrated that the dis-

tortion is given by the sum of two terms, the first representing the

distortion arising purely due to channel errors and the second being

the error in quantizing the source using a finite number of bits. The

accuracy of the theoretical results were illustrated through Monte-

Carlo simulation. Finally, the framework was applied to the prob-

lem of wideband speech spectrum quantization under the LSD mea-

sure, and seen to accurately characterize the effects of the source, the

quantizer and the channel.
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