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ABSTRACT

We present a novel, maximum-likelihood (ML), lattice-decoding al-
gorithm for noncoherent block detection of QAM signals. The com-
putational complexity is polynomial in the block length; making it
feasible for implementation compared with the exhaustive search
ML detector. The algorithm works by enumerating the nearest neigh-
bor regions for a plane defined by the received vector; in a concep-
tually similar manner to sphere decoding. Simulations show that the
new algorithm significantly outperforms existing approaches.

1. INTRODUCTION

Noncoherent detection of digital signals over unknown fading chan-
nels has recently received significant attention especially for the case
of the block-fading channel model. Applications include recovery
from deep fades in pilot-symbol assisted modulation based schemes,
eavesdropping, and blind channel estimation. Noncoherent detec-
tion is particularly applicable to systems exhibiting small coherence
intervals where the use of training signals would result in a signifi-
cant loss in throughput and capacity [1-3]. Under this noncoherent
detection regime, it has been shown by numerical simulation that
standard modulation techniques such as quadrature amplitude mod-
ulation (QAM) can achieve near-capacity in the single-antenna case
[4]. Unfortunately, existing receiver designs are exponentially com-
plex. For the constant envelope constellation of PSK, with known
channel attenuation, efficient ML receiver algorithms have been de-
veloped [5], but the challenge remains for more general modulation
classes and fading channels.

This paper focuses on the ML receiver design for QAM signals
in fading channels. We first note that various suboptimal algorithms
have been proposed. A blind phase recovery approach was proposed
in [6] for noncoherent reception of QAM where the attenuation was
assumed to be known exactly at the receiver. The noncoherent re-
ceiver considered in [7] involved using quantized channel estimates
which would results in a significant loss of optimality for fading
channels.

In this paper, we consider optimal noncoherent detection, which
requires joint estimation of both channel and data. We propose an
efficient noncoherent lattice decoding approach which provides the
ML estimate with a complexity only polynomial in the block length.
The lattice is defined by the QAM constellation and has dimension
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given by the block length. We show that the ML estimate of channel
and data is identical to finding the closest possible transmitted lattice
codeword (or lattice point) in angle to the plane described by the re-
ceived lattice vector. We propose an algorithm that searches only in
this plane, and yet it is guaranteed to find the ML estimate. We show
that for a codeword of length 7', the complexity of each detection is
O(T?). This is a significant improvement over an exhaustive search
which has exponential complexity in 7.

2. SYSTEM MODEL

2.1. Signal Model

The Gaussian integers are the set of all complex numbers a + bi
where both a and b are rational integers, and i = /—1. We define
the odd Gaussian integers as those Gaussian integers having odd real
and imaginary components.

Letx = [z1,...,27] € CT, be a block of transmitted symbols
(equivalently a lattice codeword) with each symbol z; chosen from
an M?-ary square QAM constellation Cys, where Cy is the set of
odd Gaussian integers with the absolute value of both the real and
imaginary components less than M. We also define C” as the set of
all T" x 1 lattice points containing only odd Gaussian integers.

We consider block fading channels and assume that the channel
h € C is constant for at least 7" symbols, as in [1-4]. Thus we can

write the received codeword y = [ y1,...,yr |’ as follows,
y=hx+n (€))]
where n = [ n1,...,nr | is a vector of complex additive white

Gaussian noise.

We will find it useful to separate each complex dimension into
two real dimensions. In other words, to map points in complex space
C” to/from points in R*>”. We will use the notation v to denote the
mapped version of some v € C7 as follows,

v =[Re{vi} Im{v1} ... Re{or} Im{vr}). 2)
We define the set C i:f C R?7 as the set produced by this (bijective)
mapping from Ci; C C?7, and also the set C*” as the same mapping
applied to CT.
2.2. Detection

The log-likelihood function of the maximum likelihood (ML) detec-
tor (of both channel and data) is given by

L(y;x, h) = — ||y — hx|® 3)
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where constant factors have been discarded and ||-|| represents the
Euclidean norm. For a given codeword hypothesis X, the likelihood
function is maximized by choosing

&Ty

I5[1*

h= (4)
where (-) denotes Hermitian transpose. The joint ML estimate of x
and h produces the following data estimate

St 2
XTyl
5
I

o f
M= arg max L (y;f(, %) = arg max ——
xech (1] xech, %
We calculate the ML channel estimate 2M" by substituting ™" into
(4). This is equivalent to the Generalized Likelihood Ratio Test
(GLRT). By expressing the complex vectors in R?7 as in (2) we
obtain a useful geometric interpretation of (5) as follows. We define
Y € R?T*2 a5 a basis for the subspace yC mapped into the real
space R27 (as defined by (2)), that is

v 2| Refw} Im{y} Re{yr} Im{yr}]’

= [-Im{y} Re{yi} —Im{yr} Re{yr}
é|: Y,, Yy, Yor 11 X?T,1:|/.
X1,2 X2,2 XQT—LQ XQT,Q

Note that the columns of Y are orthogonal and have equal norm.
The projection matrix P(y) € R*7*?7T is defined as

P(y) = *LXQ/
Iyl

That is, the vector P (y)x is the projection of x onto the plane YR?.
It can now easily be shown that
M = arg max cos® 0(%, P(y)x)
xecl)
Thus the ML estimate x™", corresponds to the X € C37 closest in
angle to the plane YR?.

It is important to note that two forms of ambiguity exist for this
noncoherent detection problem. The first is the well-known phase
ambiguity. For square QAM constellations there will be four indis-
tinguishable (iLML7 ﬁML) pairs with the same \EML| corresponding to
the four 7 /2 rotations of the constellation. We will assume that this
type of ambiguity can be resolved, for example, by using the phase
of the last symbol from the previous codeword [4], or by using differ-
ential encoding [8]. The second type of ambiguity we call a divisor
ambiguity and arises when there are multiple points in C1; that lie
within the same subspace through the origin (e.g. [1 +74,1 44,1 +1]
and [3 + 3,3 + 3¢, 3 + 3¢] for 16-ary QAM with 7' = 3 and here
i = +/—1). This produces a lower bound on the noncoherent block
detection error rate as discussed and analyzed in [9, 10]. Whenever
this ambiguity arises we choose the estimate for which the corre-
sponding | Ay | is largest.

3. MAXIMUM LIKELIHOOD AND NEAREST NEIGHBOR
REGIONS

Here, we consider the ‘nearest neighbor set’ of a plane segment
which is defined by the received codeword. We then present a theo-
rem stating that the nearest neighbor set of this plane segment con-
tains X™*, which provides the basis for a low-complexity ML algo-
rithm.

Definition 1 We define NN (v) as the set of points in C*T which
are the nearest neighbors to v € R*T. That is, ifd € NN(v) then
lv —d|| < |lv—ul forallu € CT.

Of course, N N (v) will usually have only one element.

Definition 2 For QAM, we define N'(S,Y) as the subset of a point
set S, such thatu € N(S,Y) if and only if: u € S; and there exists
some XA € R**! such that |[u — Y| < ||z — Y| forallz € S.
We denote N'(S,Y) as the nearest neighbor set of S with respect to
the plane YRZ.

Note that for any given A € R2*!, the points Ay and u 2 NN(Y))
have the following property

|Hi - [Xm Xi,Z ]’\l <1 (5)
forall: =1,...,2T. The converse also holds.

Definition 3 We define the clipping function fas(u) as

u f—-M+1<uM-—-1,
fu@w)=¢ -M+1 ifu<—-M+1, (6)
M -1 ifu>M—1.

We also define that when w is complex, far(u) implies that the clip-
ping function is applied to the real and imaginary components. More-
over, far(u) implies that the scalar clipping function is applied to
each element of the vector u, and likewise fu(S) implies that the
clipping is applied to each element of the set S.

The following theorem establishes a condition on the ML esti-
mate x™", which will allow us to bound the search region.

Theorem 1 For noncoherent detection of square M -ary QAM code-
words of length T', the ML estimate has the following property:

gML € f]% (N(Qi?+2T7X)) (7)

Proof 1 First, consider the case where XM € N (Q?g, Y), and note
that since N'(C37,Y) C fu(N(Cifror,Y)), then clearly X" €
S (N(Q?\/IT+2T>X))~

Now consider the case when ¥ ¢ N (C3f,Y). It can be
shown that in this case a point exists in the region N'(C3T 4o Y)
(i.e., outside C37 but inside C3r o) Which maps to XM when clipped
according to (6). To show this, consider the point v on the plane
YR? given by
ML 2
M

[P (y)x""|

<

We first show that XM is actually the clipped version of the nearest
neighbor of v, i.e. ¥ = far(NN(v)). Since we are considering
M ¢ N(C3F,Y), we know that the plane YR? does not pass
through the nearest neighbor region of ¥, and hence v (which is
on the plane) is not in the nearest neighbor region of XM*. Therefore,
the nearest neighbor of v in C*T is not XML, and in fact other points
in C*T can be closer to v as well. These closer points must therefore
lie within a hypersphere of radius ||y — gML|| centered at v. With
v defined as above, the vector XM* is tangential to the hypersphere,
and therefore it is also the case that these points are closer in angle

IV - 190



to the plane than X™". So, since XM is the closest point in C*T to
the plane YR? in angle (by definition), therefore the poinls within
the hypersphere must lie outside the constellation CiF. It can then
be shown that ™" is actually the codeword obtained by clipping the
nearest neighbor of v (which is inside the hypersphere and outside
C?T), ie. 2™ = fr(NN(v)). To complete the proof it remains
to determine the domain of fa(NN(v)). This can be found by
determining the largest possible value of v, for any i. It can be
shown thatv, < M+2T—1 and therefore fur (NN(V)) < M+-2T.

It follows that in both cases X € far(N(C3f o7, Y)). For
more details see [11].

4. EFFICIENT MAXIMUM LIKELIHOOD ALGORITHM

We now propose the following approach for reducing the search
space needed to find the ML estimate. Theorem 1 implies that ™"
can be found by first enumerating all X € far(N'(C3] 27, Y)) and
then examining each such x using the metric in (5) to find ™. The
algorithm can be visualized as performing a search across a plane,
enumerating and testing all the nearest neighbor regions, which are
hypercubes, through which the plane YR? passes.

It is therefore necessary to find and enumerate these nearest
neighbor regions. This can be done by solving for all the points Y A
on the plane YR?, where A £ [A\X2]' € R?, which correspond
to the intersections of the plane YR? with each of the 27" — 1 di-
mensional hyperplanes which represent the boundaries between the
nearest neighbor regions.

These hyperplanes are defined by the QAM constellation as
{y |y = k}foralli € {1,...,27} and forall k € K =
{0, :|:2 +(M-2),+ (M+2T)} (note that values of k between
M and M —|— 2T — 2 are not included, as discussed below). Note that
due to the presence of noise, the plane YR? is almost surely not a
subset of any of the hyperplanes and therefore the intersections are
lines. Recall that Re {y;} = Y, , and Im {y;} = y,,; and there-
fore the lines of intersection between the hyperplanes and the plane
YR? are given as follows. For each odd i and k € K we have a pair
of orthogonal lines given by

My, — Ay, =k (®)
Alyi+1 + >\2gi =k. )

An example of these lines is shown in Figure 1 which is (of
course) in the plane YR?. The figure considers 16-QAM and code-
words of length 7' = 3. It shows lines generated for the randomly
chosen received codeword y = [ —0.0195 — 0.31794, —0.0482 +
1.0950i,0.0000 — 1.8740i | € C3. Each enclosed region in the
figure has an associated point X which is in the reduced search space
defined by Theorem 1. The outer bold square in the figure shows
the outer boundary of the reduced search region. This arises because
Theorem 1 states that X" € far (N(C3/ 07, Y)).

To summarize, the proposed efficient ML search algorithm in-
volves finding all the intersection lines (e.g. as shown in Figure
1), enumerating all the regions enclosed by the lines, and for each
region calculating the likelihood metric for the corresponding code-
word. Clearly, this is a significantly reduced search space compared
with the space of all possible codewords.

One important technical point to note is that the regions between
the bold squares correspond to points in N'(C37, 57, Y) but not in
Q?w . The corresponding lattice point in each region will be clipped
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Fig. 1. Plot of lines L, vertices V and regions R given by (10) for
the vector y = [ —0.0195 —0.31794, —0.0482 + 1.09504, 0.0000 —
1.8740i ' € C>. The regions within the inner bold square corre-
spond to codewords in N'(C37,Y). The regions between the bold
squares correspond to lattice points in A (C3F +2T,Y) but not in
C3T and will be “clipped’ to a valid codeword.

back to a lattice point in C37 , as described in Theorem 1 and is why
IC was defined without the values between M and M + 2T — 2.

‘We turn our attention to enumerating all the enclosed regions in
the plane. Let us define Q to be the region in the (A1, A2)-plane,
formed by the four lines corresponding to the intersection of the
plane YR? with the 4 subspaces, Re {y;} = +£(M + 2T) and
Im{y;} = £(M + 2T') (i.e. this is the region inside the outer bold
square in Figure 1). The choice of ¢ here is such so as to minimize
the area of Q, that is i = max; |y;|°.

We denote L as the set of lines described in (8) and (9), also
denote V C Q as the set of intersection points of these lines, and
R € Q as the set of enclosed regions. Note that each r € R is a
convex region.

Each enclosed region 7 on the plane is a polygon, uniquely cor-
responding to a codeword in A/ (C37F +2T7 Y). To enumerate these
regions, we first enumerate the vertices V), and then use them to find
at least one point within each region. For each region we use the
point(s) to find a codeword estimate xZ corresponding to the region
and then calculate the corresponding metric (5).

The vertices V are found by simple calculation of the intersec-
tion points of the lines given in (8) and (9) as follows,

-1
. Y,1 Y, k1
(i, g, ks ko) & [*“1 *272] [ } (10)
(62, ks k2) Xj,l ij k2

forall ki,ke € K,i=0,1,...,2T andj =i+ 1,9+ 2,...,27T.
Now to calculate a point within each region it is sufficient to
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Fig. 2. Plot of Codeword Error Rate (CER) as a function of SNR
for a 16-ary square QAM system.

calculate a point on the open line segments in the directions [ 1 0 |
and [ —1 0 ] between each vertex v and the first intersection with
aline in £. An O(T) method is possible for this, however we can
simply calculate v = v +[€0]’,andv™ = v — [ € 0]’ for some
small € > 0, which if sufficiently small should enumerate all » € R.
To calculate the corresponding codeword %™, for the point v+ we
simply calculate

%t = fu(NN(Yp')). (11)

The codeword X is calculated similarly. To complete the algorithm,
the metric (5) is applied to each calculated codeword to obtain x™*.

The algorithmic complexity is governed by the computational
cost of enumerating V. There are O(T?) intersections to enumerate,
each of constant computational expense. For each v € V generated
by (10), we are required to solve for v+ and v~, which is O(T') (or
by using the suboptimal procedure described here is O(1)). Each
calculation of the corresponding X% (and %7) using (11) is O(T),
which is also the complexity of the metric calculation (5). Therefore,
the overall complexity is O(T®).

A reduction in computational expense, without any loss in op-
timality, can be achieved by noticing that in Figure 1, the plot is
invariant to rotations of 7/2; a manifestation of the phase ambiguity
for square QAM. Thus only a quarter of V needs to be enumerated.

5. SIMULATION RESULTS

Figure 2 presents the codeword error rate (CER) for 16-QAM as
a function of SNR, for four codeword lengths 7' = 3 and 7. In
the simulations, we have assumed that the phase ambiguities have
been removed within each codeword, (for example, by the use of
differential encoding [8]).

For comparison we show the performance of the quantization-
based receiver (QBR) considered in [7]. For the sake of comparison,
we assume a block independent Rayleigh fading channel and have
chosen the attenuation estimates for QBR in [7] uniformly from the

CDF of a Rayleigh fading distribution. The phase estimates for QBR
are uniformly spaced. For fairness, the number of attenuation esti-
mates for QBR was varied while keeping the total number of code-
word estimates equal to the maximum number that potentially could
be produced by our new algorithm. As noted in [7], there is an inher-
ent suboptimality introduced by quantizing the unbounded channel
attenuation in QBR, and the performance of our reduced search ML
algorithm is clearly superior.

As discussed in Section 2.2, there exists divisor ambiguities re-
sulting in an unavoidable lower bound on the probability of code-
word detection error. Expressions for this lower bound were pro-
vided using a number-theoretic analysis in [9] and are shown in
the figure. Clearly, for high SNR our reduced-search ML algorithm
achieves these bounds, whereas the QBR approach does not.
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