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ABSTRACT

We study the problem of semidefinite relaxation (SDR) for detec-
tion of symbols transmitted over a general MIMO channel. In the
SDR detector the maximum likelihood detection problem is relaxed
into a semidefinite program (SDP) which is solved numerically us-
ing an interior-point path-following algorithm. Herein, we provide
a criteria which, based on the channel matrix realization, determine
the accuracy required by the SDP solver to give a good bit error rate
performance of the overall SDR detector. This also reduce the com-
plexity of the SDR detector as it limits the number of interior itera-
tions required in the SDP solver. The performance is demonstrated
through simulations.

1. INTRODUCTION

Semidefinite relaxation (SDR) has been presented a near optimal and
computationally attractive alternative to exact maximum likelihood
(ML) detection for symbols transmitted over a general multiple-
input multiple-output (MIMO) channel, see e.g. [1, 2]. The SDR
detector approaches the detection problem by first relaxing the con-
straints of the ML detection problem to obtain an convex optimiza-
tion problem. Then, from the solution to this convex problem an
estimate of the transmitted message is obtained. The near optimality
of the SDR detector has been supported both by simulations [1, 2] as
well as analytical results [1, 3]. For example, in [1] it is shown that
several popular suboptimal detectors can be viewed as further relax-
ation of the SDR detector and [3] presents necessary and sufficient
conditions for the SDR estimate to coincide with the ML estimate.

The algorithmic solutions to the convex problem which forms
the basis of the SDR detector do not provide an exact solution but
rather an approximate solution which can be iteratively refined to
some arbitrary precision. Clearly, the iterative procedure should be
continued until no significant further improvement in the estimates
are obtained as further iterations will only add to the complexity
of the detector. However, most of the analysis of SDR only make
statements regarding the objective value of the optimization problem
and not the optimization variables themselves, even though these are
more directly related to the bit error rate (BER) of the detector.

Most efficient algorithmic solutions to the semidefinite opti-
mization problem are based on the concept of an interior-point cen-
tral path [4] which may be viewed as a set of perturbed solutions to
the optimization problem which generate a sequence of iterates ap-
proaching the optimal solution. The central path is given implicitly
as the solution to a non-linear system of equations and can in general
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not be expressed explicitly in closed form. One of the main contri-
butions of this work is to provide a linearization of the central path at
the optimal solution corresponding to the noise-free case. This pro-
vides a perturbation analysis for the SDR and the basis for a criteria
which relates the solution accuracy with the error probability of the
SDR detector. It is shown that the accuracy can be adaptively based
on the channel matrix realization which ultimately provide a means
to limit the complexity of the SDR detector without sacrificing BER
performance.

In Section 2 the detection problem, along with the necessary
background for semidefinite relaxation is presented. The main ana-
lytical result of this work is presented in Section 2.3. The proposed
termination criteria is evaluated numerically in Section 3 which is
followed by conclusions in Section 4. In what follows, we denote
vectors and matrices using boldface characters. No notational dif-
ference is made between random variables and their realizations.
The notation [·]i and [·]i,j is used to denote the ith and (i, j)th el-
ement of vectors and matrices respectively. The operators Diag(·)
and diag(·) denote a diagonal matrix with some given entries and
the vector of diagonal elements respectively. X � 0 is used to de-
note that X is a positive semidefinite and symmetric matrix. Finally,
the symbol ◦ denotes entrywise (Hadamard) matrix and vector mul-
tiplication.

2. DATA MODEL AND DETECTION

The specific detection problem we consider herein is the detection
of BPSK symbols transmitted over an AWGN MIMO channel given
by

y = Hs + v. (1)

In the above, y ∈ R
n, H ∈ R

n×mand v ∈ R
n is the vector of re-

ceived signals, channel matrix, and additive noise respectively. The
transmitted symbols, s ∈ Bm � {±1}m, are assumed to be i.i.d.
distributed over the signal set and the noise, v, is assumed to be
distributed according to a Gaussian distribution with zero mean and
unit variance. We will also assume throughout that n ≥ m and that
H is full rank. Under these assumptions, the maximum likelihood
estimate of s, given y and H, is well known to be

ŝML = arg min
ŝ∈Bm

‖y − Hŝ‖2, (2)

a problem which unfortunately is NP-hard for general H and y [5].
This provides motivation for computationally efficient suboptimal
approches such as the SDR detector. Note also that while we ex-
plicitely consider a real valued channel model the case of a com-
plex channel using QPSK can be treated by writing the model on an
equivalent real valued form, see e.g. [6].
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2.1. Semidefinite Relaxation

The optimization problem given by

min
X, x

tr(LX)

s.t. diag(X) = e

X = xxT

(3)

where

L =

�
HTH −HTy

−yTH yTy

�
, x =

�
ŝ

1

�
.

and e is the vector of ones is equivalent to (2) in the sense that the
solution to either problem is easily obtained from the solution to the
other [2]. Essentially, (3) allows the quadric objective of (2) to be
replaced by a linear objective by expanding the dimension of the
optimization variable from R

m to R
m+1×m+1. The rank one con-

straint X = xxT along with the constraint diag(X) = e enforces
a one-to-one correspondence between X in (3) and ŝ ∈ Bm in (2).
Also, due to symmetry of the problem the constraint [x]m+1 = 1
does not have to be maintained explicitly.

As (2) and (3) are equivalent they are equally hard to solve in
a complexity theoretic sense. However, by replacing the rank one
constraint, X = xxT, with a less restrictive positive semidefinite
constraint, X � 0, a convex, and thus efficiently solvable, optimiza-
tion problem given by

min
X

Tr(LX)

s.t. diag(X) = e

X � 0

(4)

is obtained. The problem in (4) is referred to as the semidefinite
relaxation of (3), or equivalently (2). Whenever the optimal solution,
X0, of (4) is of rank one it is also optimal for (3). The existence of
rank one solutions to (4) is however by no means guaranteed and
will generally depend on the particular realization of y and H [3].

An SDR detector solves (4) to obtain an, not necessarily rank
one, optimal solution, X0. From this solution an estimate, ŝ, of s is
obtained using some approximation strategy. In [2] it is suggested
to either let ŝ be equal to the sign of the first m elements of the last
column of X0 or to base the estimate on the sign of the eigenvec-
tor corresponding to the largest eigenvalue of X0. It can be shown
that in both cases ŝ will be equal to ŝML whenever X0 is rank one.
Another approach is to randomly generate several candidates for ŝ

based on X0, which can then be evaluated by (2), see [1]. Numeri-
cal evidence suggests that this approach is superior (in terms of final
bit error rate) to the previously mentioned. However, in the inter-
est of analytical simplicity, we shall herein only consider the first
approach where [ŝ]i = sign([X0]i,m+1).

2.2. Interior-Point Solutions

The optimization problem posed in (4) is typically, and efficiently,
solved numerically using a primal-dual interior-point approach [4].
In such an approach a sequence of approximate solutions to the sys-
tem of equations given by

diag(Xτ ) = e (5a)

Zτ + Diag(uτ ) = L (5b)

XτZτ = τI (5c)

Xτ ,Zτ � 0 (5d)

are obtained as τ → 0. In (5) τ > 0 parameterizes a set of
unique solutions, (Xτ ,Zτ ,uτ ), referred to as the central path where

(Zτ ,uτ ) are auxiliary variables corresponding to the dual optimiza-
tion problem of (4). Further, when τ = 0 (5) is referred to as
the Karush-Kuhn-Tucker (KKT) optimality conditions for the SDR
and any X0 for which there exists a corresponding Z0 and u0 such
that (5) holds for τ = 0 is also optimal in (4). Essentially, an interior-
point method is an iterative algorithm which follows the central path
towards the optimal solution of (5) for τ = 0 and thus also of (4).

Herein, following [2], we consider the Helmberg-Kojima-
Monteiro (HKM) interior-point method [4]. The HKM method pro-
duces a series of iterates (X(k),Z(k),u(k)) which satisfy (5a), (5b)
and (5d) (but not necessarily (5c)) and which converge towards the
solution of (5) for τ = 0. At each iterate a Newton step is taken
towards the solution of (5) for τ = τ (k) where

τ (k)
� σ

Tr(X(k)Z(k))

m + 1
(6)

for some user specified σ ∈ (0, 1). Note that due to an inherent poor
conditioning of the system at the optimal solution (i.e. for τ = 0)
a strategy of simply taking Newton steps toward this solution will
either converge slowly or not converge at all. However, by applying
the HKM strategy convergence to a fix tolerance ε for which

Tr(X(k)Z(k))

m + 1
≤ ε (7)

can be guaranteed in O(
√

m) iterations. With a computational com-
plexity of O(m3) operations per iteration the HKM method offers
a ε-approximate solution to (4) with a complexity of O(m3.5). For
a full description or the algorithm the reader is referred to [2] or [4]
and references therein.

Any (Xτ ,Zτ ,uτ ) on the central path satisfies
Tr(XτZτ )/(m + 1) = τ . Although the iterates of the HKM
method will follow the central path none of them will, strictly
speaking, lie directly on the central path (trying to enforce this
would inevitably lead to an inefficient algorithm). It is however still
reasonable to assume that iterates satisfying (7) will behave similarly
to central path solutions for τ = ε. Therefore, results regarding τ
will be used to obtain statements regarding ε and although it is hard
to give stringent mathematical support for this procedure, it will be
shown numerically that the termination criterion presented herein
(which is based on this notion) does in fact lead to a significant
reduction in complexity without sacrificing the BER of the detector.

2.3. Channel Adaptive Termination

It can be shown [4] that any X satisfying (5a), (5b), (5d) and (7)
is ε-optimal in the sense that Tr(LX0) ≥ Tr(LX) − ε. This is
however a statement regarding the objective value of the solution and
not the solution itself. Ultimately, it is the distance between X and
X0 which will affect the performance of the SDR detector in terms
of its BER and ε should be selected to to give an acceptable tradeoff
between the BER and complexity (or number of iterations). In what
follows we argue that ε can be set adaptively based on the channel
matrix, H, and give a heuristic for selecting ε without sacrificing
BER performance.

At the heart of this heuristic is the realization that the sensitiv-
ity of the central path solutions (Xτ ,Zτ ,uτ ) to a non-zero τ , i.e.
τ > 0, indicate to which tolerance the SDR problem of (4) needs to
be solved. Recall that the final estimate, ŝ, of the SDR detector is
based on the sign of the last column of X. Thus, ideally we would
like to express the elements of the last column as functions of τ .
While no exact result exists in closed form the first order approxi-
mations around the noise-free (i.e. when v = 0) points are given by

IV  186



a relatively simple expression. This is formalized by the following
proposition (proved in Section 5) which forms the main analytical
contribution of this work.

Proposition 1 Consider the solution, Xτ , of (5) in the zero noise
(v = 0) case. Let

Xτ �

�
Ψτ ψτ

ψT
τ 1

�

for Ψ ∈ R
m×m and ψ ∈ R

m. Then

ψτ = s − τ

2
s ◦ diag(Q−1) + O(τ2) (8)

where Q � HTH.

Note that from the expression for ψτ it can be seen that the
optimal solution in the zero noise case is equal to the transmitted
message, i.e. ψ0 = s. This is simply stating that if there is no
noise present, then the SDR detector will always recover the correct
message (at least if (4) were to be solved exactly). Further, it states
that the sensitivity of the ith entry of ψτ to a non-zero τ depends
directly on the ith diagonal entry of Q−1 = (HTH)−1.

In order to further interpret this result, consider the example
where H =

√
ρ[h1h2], ‖h1‖ = ‖h2‖ = 1 and hT

1 h2 = ξ.
In this case the diagonal entries of Q−1 are given by [Q−1]i,i =
ρ−1(1 − ξ2)−1. Thus, due to an increasing value of [Q−1]ii the so-
lution to (5) will be more sensitive to a non-zero τ when either the
SNR is low (when ρ is small) or when the channel is poorly con-
ditioned (when ξ is close to ±1). This corresponds well with the
intuition that (2) is harder to solve or approximate in these cases.

Based on (8) we propose selecting ε = ε(H) according to

ε(H) =
c

maxi[Q−1]i,i
(9)

for some c, i.e. if the diagonal entries of Q−1 are large then the solu-
tion is sensitive to a perturbation in the central path parameter τ and
the semidefinite program of (4) needs to be solved to a higher tol-
erance. Alternatively, for high SNR and well conditioned channels
it is less crucial to obtain an exact solution and fewer iterations are
required when solving the SDR optimization problem in (4).

3. SIMULATIONS RESULT

In this section a numerical evaluation of the proposed method is
given. For the purpose of the simulations, realizations of the H

matrix were generated for the m = n case with i.i.d. (real valued)
Gaussian elements of variance ρ/n where ρ is the SNR of the chan-
nel. The results reported in Fig. 1 were averaged over both channel
realization as well as noise and symbol realizations. Further, ini-
tialization of the SDR detector was done according to the procedure
outlined in [2].

First, Fig. 1(a) shows the bit error rate of the SDR detector com-
pared to the ML detector (implemented using the sphere decoder
(SD)) as well as the MMSE detector. Version one, SDR1, of the
SDR detector solve (4) to a high precision (of ε = 10−6 which is the
same as used in [2]) while version 2, SDR2, use the adaptive termi-
nation criteria of (9) for c = 1. As can be seen from Fig. 1(a) the
loss in terms of BER which can be attributed to an unprecise solu-
tion of (4) is minor. Also, the gap to the ML detector can be further
reduced by considering more advanced procedures of converting the
SDR solution to a symbol estimate, ŝ, see e.g. [1]. Naturally, the
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Fig. 1. Performance of the SDR detector
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proposed termination criteria will be useful also in this case, even
though it was motivated using a simpler strategy.

Fig. 1(b) shows the number of iterations required by the two
SDR versions to converge to the specified tolerance. It is worth-
while to note that the number of iterations required by an implemen-
tation based on a fixed tolerance, ε, can be made closer to the one of
SDR2 by selecting ε based on the channel statistics and SNR (which
could be accomplished by extensive simulations). However, such an
approach will inevitably be targeted at the specific scenario and ex-
perience a loss in either BER of complexity performance when the
statistics of the problem are changed and lack the ability to handle
poorly conditioned channel realizations. Further, note that it is only
the number of iterations and not the computational complexity per
iteration which is affected by the termination criteria. Thus, only a
complexity reduction by a constant factor (as is apparent in Fig. 1(b))
should be expected.

Finally, the complexity in terms of floating point operations for
the implementation of the SDR2 detector is shown in Fig. 1(c). As
a comparison the complexity of the popular sphere decoder algo-
rithm (implemented according to the Schnorr-Euchner strategy with
an initial radius tangent to the Babai-estimate [7]) along with the
QR-factorization pre-processing step of this decoder is displayed.
As can be seen from the figure, for small problems the complexity
of the sphere decoder is dominated by the QR-factorization which
is of less computational complexity than the SDR detector. How-
ever, due to the (average and worst case) exponential complexity of
the sphere decoder [8] the (polynomial time) SDR detector is more
computationally attractive for large scale problems. For this partic-
ular example, the cross over point is at around m ≈ 48 but this
usually varies with the statistics of the channel model and the SNR.
Note also that the average complexity of the semidefinite relaxation
detector, as well as the sphere decoder, can be further reduced using
the techniques outlined in [6].

4. CONCLUSIONS

Based on the algorithmic solution to a semidefinite program forming
an integral part of the SDR detector we derive a sensitivity analysis
on which a channel adaptive termination criteria is based. This crite-
ria is used to lower the computational complexity of the SDR detec-
tor and its effectiveness is illustrated through numerical simulations.

5. PROOF OF PROPOSITION 1

When v = 0 the solution of (5) for τ = 0 is given by

X0 =

�
ssT s

sT 1

�
, uτ = 0

and Z0 = L where L =

�
QT −Qs

−sTQ sTQs

�
which can be verified by substituting the solution back into (5). Let
X̃τ and Z̃τ be the deviation from the optimal solution due to τ > 0,
i.e. X̃τ � Xτ − X0 and Z̃τ � Zτ − Z0. By expanding (5c) one
obtains XτZτ = X0Z0 + X̃τZ0 + X0Z̃τ + X̃τ Z̃τ = τI. Using
X0Z0 = 0 and X̃τ Z̃τ ∈ O(τ2) it follows that

X̃τZ0 + X0Z̃τ� �� �
A

= τI + O(τ2). (10)

Now let

X̃τ �

�
Ψ̃τ ψ̃τ

ψ̃
T

τ 0

�
and Z̃τ �

�
Φ̃τ 0

0T φ̃

�
.

Note that due to the constraints given by (5a) X̃τ , and Ψ̃τ , have zero
elements along the diagonal. Equivalently, by (5b) Z̃τ must be a
diagonal matrix. Expanding (10) using the above parameterizations
yields

A=

�
Ψ̃τQ − ψ̃τs

TQ + ssTΦ̃τ −Ψ̃τQs + ψ̃τs
TQs

ψ̃
T

τ Q + sTΦ̃τ −ψ̃
T

τ Qs + φ̃τ

�
. (11)

From the bottom left block of A in (11), along with the diagonal
constraint for Φ̃τ , it follows that

Φ̃τ = −Diag(s)Diag(Qψ̃τ ) + O(τ2)

where [s]2i = 1 has been used. Inserting this into the top left block
of A yields

Ψ̃Q − ψ̃τs
T
Q + sψ̃

T

τ Q = τI + O(τ2)

and
Ψ̃τ − ψ̃τs

T − sψ̃
T

τ = τQ−1 + O(τ2)

by right multiplication with Q−1. The diagonal elements of the
above matrix are given by

−2[s]i[ψ̃τ ]i = τ [Q−1]i,i + O(τ2)

(as Ψ̃τ has a zero diagonal) or equivalently

ψ̃τ = −τ

2
s ◦ diag(Q−1) + O(τ2)

where ([s]i)
2 = 1 has been used again. Combining this with ψ0 = s

which follows directly from the expression for X0 yields

ψτ = s − τ

2
s ◦ diag(Q−1) + O(τ2)

which establishes the proposition. �
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