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ABSTRACT

Trace-orthogonality is an important property of linear space-time en-
coders that has emerged relatively recently. In this work we carry out
the theoretical performance analysis of a low complexity decoder for
Trace-Orthogonal space-time codes based on the linear MMSE esti-
mator. We derive the diversity order of such a decoder in the case of
MIMO systems affected by uncorrelated flat Rayleigh fading, when
information symbols are carved from a QPSK constellation, and are
encoded using what we term a Unitary Trace-Orthogonal Design.
Then we propose an iterative decoder that dramatically improves the
performance over the linear MMSE decoder. Simulation results give
evidence of the effectiveness of the proposed scheme.

1. INTRODUCTION

Multi-antenna Multi-Input Multi-Output (MIMO) systems have at-
tracted a lot of research in the recent years because of their potential
great increment of spectral efficiency over scattering–rich wireless
channels [1]. A huge literature is by now available on space-time
coding, as the basic tool to exploit the potentials of multi-antenna
systems. The basic problem in the design of space-time coding sys-
tems is how to strike the best balance between three fundamental
issues: i) performance, typically expressed in terms of bit error rate
(BER) or, more appropriately for fading channels, average BER or
out of service probability; ii) capacity, and iii) receiver complex-
ity. Orthogonal space-time block coding [2], [3] is an example of
method capable to collect the full diversity gain, using a very simple
scalar decoder, but it is not optimal from the point of view of capac-
ity [4]. On the contrary, Vertical-BLAST methods [5] guarantee full
rate, but at the expenses of diversity gain or complexity. Hassibi and
Hochwald in [6] proposed a rather general method to design linear
dispersion (LD) codes, where the transmitted symbols are dispersed
over space and time through spreading matrices that are built in order
to maximize the ergodic capacity of the MIMO system. In the effort
of designing codes that are guaranteed to have good performance in
terms of both rate and BER, Ma and Giannakis in [7] and El Gamal
and Damen in [8] provided general methods for building codes ca-
pable of being information lossless while guaranteeing, at the same
time, full-diversity gain. An important property of linear space-time
encoders that emerged relatively recently, is trace-orthogonality [9],
[10], [11], [12], [13] that is the property of a linear space-time code
to have encoding matrices orthogonal with respect to the trace in-
ner product between matrices. Trace-orthogonality is the key prop-
erty for lossless information transfer, and it comes in useful to find
suboptimal methods to achieve a good balance between rate, BER
and complexity. Trace-orthogonality guaranteeing both full rate and
full diversity was proposed in [13]. In this work we start from the
results of [10] where the information invariance property of trace-
orthogonality is proven and a low complexity scalar detector for

Trace-Orthogonal space-time codes based on linear MMSE estima-
tor is devised. In particular, in [10] the authors derived the condition
under which the proposed detector achieves minimum BER, for any
channel realization, and provided the expression of such a minimum
BER as a function of SNR. Using these results, in this paper we
take explicitly into account the statistics of the MIMO channels and
carry out a theoretical performance analysis of the decoder, with the
objective to determine its diversity order. Then, we propose an itera-
tive receiver based on the linear MMSE estimator, that dramatically
improves the performance. The paper is organized as follows. The
system model is outlined in Section 2 with a summary of some re-
sults from [10] useful for subsequent evaluation. In Section 3, we
carry out the theoretical performance analysis of linear MMSE de-
coder deriving its diversity order for uncorrelated flat Rayleigh fad-
ing channels. In Section 4 we propose an iterative detection scheme
based on a property of the linear MMSE estimator. Section 5 fol-
lows with numerical simulations showing the effectiveness of the
proposed scheme and some conclusive remarks.

2. SYSTEM MODEL

Consider a flat fading MIMO system with nT transmit and nR re-
ceive antennas. After matched filtering and symbol-rate sampling,
the input-output relation can be written as

y = Hx + v, (1)

where H ∈ C
nR×nT is the channel matrix, x ∈ C

nT is the vector
of transmitted symbols and v ∈ C

nR is the noise vector assumed
to be zero mean circularly symmetric complex Gaussian with co-
variance matrix σ2

vI . Assuming the channel constant over Q con-
secutive channel uses (quasi-static fading), stacking the transmitted
vectors and the received ones in matrices, we obtain the following
relation

Y = HX + V , (2)

where V is the nR × Q received noise matrix, and X is the space-
time nT × Q code matrix. We assume that information symbols are
independent with zero mean and variance σ2

s , and are encoded into
X using a full-rate Unitary Trace-Orthogonal Design (UTOD) [10].
That is a vector of ns = nT Q (full-rate condition) complex symbols
s = (s1 s2 · · · sns)T is mapped onto the code matrix X according
to the rule

X =

ns�
k=1

Aksk (3)

where encoding matrices Ak (k = 1, . . . , ns) satisfy the following
relations which define a Unitary Trace-Orthogonal Design:

tr
�
A

H
k Aj

�
= δjk, k, j ∈ {1, · · · , ns} , (4)
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where δjk denotes the Kronecker delta, and

AiA
H
i =

1

nT

InT
, i ∈ {1, · · · , ns}. (5)

In [10], and [11] it was proven that (4) is a necessary and sufficient
condition for lossless information transmission, and the low com-
plexity linear MMSE (LMMSE) estimator for UTOD was derived,
given by

ŝk = tr(AH
k W Y ) , (6)

with

W = (HH
H +

1

γ
InT

)−1
H

H , (7)

where γ = σ2
s/σ2

v is the SNR.
Moreover, in the same references, it was proved that (5) is a neces-
sary and sufficient condition, for the decoder composed by the cas-
cade of (6) followed by hard decision, to achieve minimum BER
when information symbols are carved from a QPSK constellation.
In particular the minimum BER1, for any realization H of the chan-
nel, is given by

P min
e (H , γ) =

1

2
erfc

�
�
�

1

2

�
nT

tr (W H)
− 1

�−1
�
� , (8)

where W is defined in (7).

3. THEORETICAL PERFORMANCE ANALYSIS
OF LMMSE DECODER

The results summarized in the previous section hold, independently
of the statistics of the channel matrix H . However, to carry out
a performance analysis we need to specify the fading distribution.
We assume flat Rayleigh fading channels with uncorrelated channel
coefficients. Information symbols are carved from a QPSK constel-
lation and are encoded using a full-rate2 Unitary Trace-Orthogonal
Design [10].

Under these hypotheses, using (8), the BER averaged over the
channel statistics is given by

Pe(γ) = E

�
P min

e (H , γ)
�

, (9)

where γ is the SNR. We are interested in characterizing the asymp-
totic behavior of Pe(γ) as γ → ∞. To this end let us consider the
argument of expectation P min

e (H , γ) which can be recast as

P min
e (H , γ) =

1

2
erfc

	

ω

2(1 − ω)

�
, (10)

with

ω =
1

nT

tr(W H) =
1

nT

nT�
k=1

λk

λk + 1
γ

, (11)

where λ1, . . . , λnT
are the eigenvalues of HHH . Firstly we need

to ascertain the condition under which

lim
γ→∞

Pe(γ) = 0, (12)

as this guarantees the absence of BER floor. It easy to verify that
(12) holds if and only if

lim
γ→∞

P min
e (H , γ) = 0 (a.s.), (13)

1Average BER for each block of ns transmitted symbols, see [10].
2That is ns = Q · nT .

where (a.s.) stands for almost surely, i.e. with probability 1. From
(10) and (11) condition (13) is equivalent to

lim
γ→∞

1

nT

nT�
k=1

λk

λk + 1
γ

= 1 (a.s.), (14)

which holds true if and only if λ1, . . . , λnT
are almost surely non-

null. These last are the eigenvalues of HHH and, since we are con-
sidering uncorrelated Rayleigh fading, this is possible if and only if
H is almost surely full column rank, that is if and only if nR ≥ nT .

In the sequel we assume that this condition is satisfied and thus
Pe(γ) is infinitesimal as γ → ∞. The next step is to quantify the
infinitesimal order of Pe(γ), which gives the diversity order of the
LMMSE decoder.

Towards this end let us consider P min
e (H , γ) in (10). It is a con-

vex function of its argument ω ∈ [0, 1), and since ω is the arithmetic

mean of the values λk


λk + 1

γ

�−1

∈ [0, 1), for k = 1, . . . , nT ,

the application of Jensen’s inequality to (10) leads to the following
upper bound

P min
e (H , γ) ≤

1

2nT

nT�
k=1

erfc

�

λkγ

2

�
, (15)

which can be further upper bounded, resorting to the usual inequality
erfc(x) ≤ e−x2

, as

P min
e (H , γ) ≤

1

2nT

nT�
k=1

e−
γ
2

λk . (16)

Inserting this bound in (9) we get, eventually

Pe(γ) ≤
1

2nT

nT�
k=1

E

�
e−

γ
2

λk

�
=

1

2
E

�
e−

γ
2

λ
�

, (17)

where λ denotes one of the unordered eigenvalues of HHH . The
probability density function of λ, under the above hypotheses of un-
correlated Rayleigh fading and nR ≥ nT , assumes the following
expression [1]

pλ(λ) = λnR−nT e−λ

���
��

1

nT

nT −1�
k=0

k!
�
LnR−nT

k (λ)
�2

(nR − nT + k)!

���
�� , (18)

where Lν
k(λ) =

�k

i=0

�
k+ν

k−i

� (−λ)i

i!
is the associated Laguerre poly-

nomial3 of order ν and degree k. The term between braces in (18)
is a polynomial of degree 2(nT − 1). Denoting it by Q(λ) =�2(nT −1)

k=0 ckλk, the expected value in (17) is computed as follows

1

2
E

�
e−

γ
2

λ
�

=
1

2

2(nT −1)�
k=0

ck

�
∞

0

λnR−nT +ke−(1+ γ
2
)λdλ

=

2(nT −1)�
k=0

ck

(nR − nT + k)! 2nR−nT +k

(γ + 2)nR−nT +k+1

= c0
(nR − nT )! 2nR−nT

(γ + 2)nR−nT +1
+ o

�
1

γnR−nT +1

�

=

�
nR

nT

�
2nR−nT

nR − nT + 1

	
1

γ + 2

�nR−nT +1

+ o

�
1

γnR−nT +1

�
,

(19)

3The reported expression of Lν
k
(λ) is easily derived from its Rodrigues

representation Lν
k
(λ) = eλλ−ν

k!
dk

dλk

�
e−λλk+ν

�
.
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where in deriving the last equality c0 was computed from (18) as

c0 =
1

nT

nT −1�
k=0

k!
�
LnR−nT

k (0)
�2

(nR − nT + k)!
=

�
nR

nT

�
(nR − nT + 1)!

.

Substituting (19) in (17) we conclude that as the SNR γ increases
the following asymptotic upper bound holds for the average error
probability

Pe(γ) ≤

�
nR

nT

�
2nR−nT

nR − nT + 1
γ−(nR−nT +1) (γ → ∞) , (20)

and thus the diversity order for LMMSE detector is nR −nT +1. In
[14] and [15], authors argued that one can expect LMMSE receiver
to have the same diversity order of Zero-Forcing (ZF) one, namely
nR − nT + 1, since the former converges to ZF as SNR goes to
infinity, but no formal proof was given to support this result.

4. ITERATIVE LMMSE DECODER

The LMMSE decoder has the advantage of very low complexity
but it suffers from a quite low diversity order. In this section we
consider the possibility to improve the performance of LMMSE de-
coder resorting to an iterative procedure based on some properties of
MMSE estimators. To be more precise, let us assume that x1 and
x2 are independent zero mean real random vectors with i.i.d. com-
ponents having variance σ2

s , collecting information symbols, and
w ∼ N (0, σ2

wI), with w independent of x1 and x2, is the noise
vector. Assume that we observe x1 and x2 through the vector y

given by
y = H1x1 + H2x2 + w , (21)

where H1 and H2 are known real matrices. The linear MMSE es-
timate of xi (i = 1, 2) is given by

x̂i = H
T
i G

−1
y = xi + ei (22)

where G = (H1H
T
1 + H2H

T
2 + 1

γ
I), with γ = σ2

s/σ2
w, and the

last equality expresses each estimate as the actual value plus estima-
tion error. Unlike x1 and x2 that are statistically independent, the
estimation error vectors e1 and e2 are correlated according to the
following error covariance matrix Ke

Ke =

�
K11 K12

K21 K22

�
, (23)

where K ij = E{eie
T
j } = σ2

s(δijI − HT
i G−1H j), with δij the

Kronecker delta.
Now, suppose that we have knowledge of the current outcome of

vector x2 = x̄2, which, in turn, implies that we are able to compute
the corresponding outcome of the error vector e2 from (22) as ē2 =
x̂2 − x̄2. Exploiting the correlation between e1 and e2 and the
knowledge of ē2 we may estimate e1 as

ê1 = K11K
−1
22 ē2, (24)

and try to improve the estimate of x1 using		x1 = x̂1 − ê1. (25)

It is worthwhile noting that (25) actually coincides with a linear
MMSE estimate of x1. Indeed it is possible to prove that the fol-
lowing identity holds true

		x1 =



H

T
1 H1 +

1

γ
I

�−1

H
T
1 (y − H2x̄2), (26)

where the right-hand side of (26) is the linear MMSE estimate of
x1 when x2 is known and is equal to x̄2. Equivalently (26) is the
linear MMSE estimate of x1 after removing from y the ISI due to
x2, namely H2x̄2.

The procedure described so far suggests a way to improve iter-
atively the soft estimate of the symbols not yet decoded (x1), pro-
vided that we have a reliable estimate of the previously decided sym-
bols (x2). A critical point is the reliability of the decisions already
taken, which can be achieved only if we are able to choose “clev-
erly” the symbols to decode at each iteration. In this regard, note
that the LMMSE decoder in (6) has the property that the estimates
are affected by errors with the same variance [10]. This, in turn, im-
plies that the symbol estimates have the same SINR, thus implying
that the SINR value cannot be used as a selection metric. However,
the estimation errors have zero mean, and since they can be assumed
to be (approximately) Gaussian, large values for them are less likely.
This led us to decode at each iteration the symbol whose MMSE es-
timate is closest to a constellation point. The effectiveness of this
choice will be later assessed by simulations.

For each block of ns complex (2 ns real) symbols the receiver
performs the iterative procedure listed below. We use the convention
that when A is a set, then sA (or eA) denotes a vector collecting
symbols (estimation errors) whose indices belong to A.

Iterative LMMSE decoder

1. Set A = {1, 2, . . . , 2 ns}, and B = ∅

2. Compute in ŝA the linear MMSE estimates of the symbols
with indices in A

3. Find the component of ŝA nearest to a constellation point;
denote it by ŝk, where k ∈ A

4. Decode it as s̃k = Dec[ŝk]

5. Compute the error affecting the k-th estimate as ēk = ŝk− s̃k

6. Set A = A− {k}, and B = B ∪ {k}

7. Estimate the error vector êA using ēB

8. Update undecoded estimates ŝA = ŝA − êA

9. If A 	= ∅ goto 3 else stop

Due to identity (26), the proposed procedure is equivalent to it-
eratively performing detection and ISI cancelation. In this regard,
it could suffer severely from error propagation due to erroneous de-
cisions. However simulations confirm that its use dramatically in-
creases the performance over the non-iterative MMSE decoder. The
relation (25) can be useful to explain this behavior. In fact, the per-
formance of linear MMSE detector severely degrades compared to
ML detection due to its (in general of linear detectors) inability to
properly adapt its decision regions to the noise statistics [16]. It
should be noted, in fact, that multiplication by Wiener filter matrix
introduces correlations of the noise components which make com-
ponentwise symbol detection suboptimal. Now, let us consider (25),
that can be recast, using (22), as

		x1 = x̂1 − ê1 = x1 + e1 − ê1. (27)

Note that the new estimate 		x1 in (27) is affected by error (e1 − ê1)
which is uncorrelated with e2, due to the Orthogonality Principle
[17]. In words, the effect of the iterations is to whiten, even if only
approximately, the estimation errors. This, in turn, improves the
performance of subsequent componentwise symbols detection.
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Fig. 1. Average BER for QPSK in a MIMO system with nT = 4,
and nR = 4, 6. UTOD with LMMSE (continuous line) decoder
compared to iterative LMMSE (dashed line) decoder.

5. SIMULATION RESULTS AND CONCLUSION

In Figure 1 we compare the average BER performance of LMMSE
decoder versus iterative LMMSE one. We assume Rayleigh fading
channels with uncorrelated channel coefficients. The curves are ob-
tained via Monte Carlo simulations averaging over 105 channel real-
izations. The SNR is defined as PT /(nT σ2

v), where PT is the total
transmission power, nT is the number of transmitting antennas, and
σ2

v is the noise variance. Information symbols are carved from the
QPSK constellation with Gray mapping and are encoded using the
shift and multiply basis introduced in [9], which constitutes a Uni-
tary Trace-Orthogonal Design. We consider MIMO systems with
nT = 4 and nR = 4, 6. Since nR ≥ nT we are guaranteed that
BER floor is avoided. Continuous curves denote LMMSE decoder
and give evidence of the diversity order which is respectively 1 (for
4 × 4 system) and 3 (for 6 × 4 system) in agreement with (20). The
performance of iterative LMMSE decoder (dashed lines) improves
dramatically over LMMSE as the marked increase of slope, i.e. di-
versity order, emphasizes. We should attribute this remarkable gain
mainly to two aspects: the use of a Unitary Trace-Orthogonal Design
as the space-time coding strategy, since it guarantees minimum BER
for LMMSE decoder4; the adoption of an effective selection met-
ric5 that settles the decoding order. This last operation is indeed the
most critical point since the effectiveness of the procedure strongly
depends on the reliability of taking decisions.
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