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ABSTRACT

We address the problem of distributed compression in acoustic sen-
sor networks. A typical scenario consists of a set of microphones
that record a sound source located at some unknown position. The
goal then is to convey the corresponding audio signals to a central
base station for processing. We thus aim at designing efficient dis-
tributed communication schemes that minimize the overall bit-rate
needed in order to achieve a given reconstruction accuracy. In this
paper, we show how the a priori knowledge of the system’s geometry
can be beneficially used in order to lower the transmission rates. We
propose a distributed coding scheme for simple synthetic sources.
These results are then applied to more general signals by means of
oversampled analog-to-digital conversion. Simulation results con-
firm the effectiveness of our approach.

1. INTRODUCTION

Sensor networks have recently emerged as a promising technology
for a variety of applications ranging from surveillance to environ-
mental monitoring. The scenario generally envisioned consists of a
large number of distributed nodes that collaborate in order to process
data available at multiple distant locations. Typical such devices are
self-powered low-cost processing units with wireless communica-
tion capabilities. Beyond the appealing perspectives offered by such
distributed infrastructures, this new paradigm has given rise to nu-
merous challenging problems from both a theoretical and practical
viewpoint.

In this work, we focus on acoustic sensor networks, where mul-
tiple audio capture devices are deployed in order to record the spatio-
temporal sound field created by an acoustic source. The properties
and sampling of this field were recently investigated by Ajdler et
al. under the name of plenacoustic function [1]. These sensors then
wirelessly transmit the acquired data to a central base station which
aims at extracting relevant features of the original sound field by
means of judicious signal processing. The tasks that can be per-
formed at the base station in this scenario are manifold. Possible ex-
amples are time-delay estimation for source localization and tracking
or beamforming for enhanced audibility. In the centralized frame-
work, these problems have received considerable attention over the
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last decades and are relatively well understood. In the distributed
scenario, however, the very limited computation and communication
capabilities of current sensor technology motivate the quest for effi-
cient protocols that specifically target these new design criteria. In
this context, the results obtained in the mid 70’s by Slepian-Wolf [2]
and Wyner-Ziv [3] on distributed compression of correlated sources,
have laid the theoretical grounds for promising advances. Applica-
tions of these results to the plenacoustic function can be found in [4].
From a practical standpoint, however, such distributed code designs
have only recently emerged from the research community.

In this paper, we wish to design an efficient distributed coding
scheme in the scenario where multiple microphones receive the sig-
nal emitted by a sound source whose location is unknown. An equiv-
alent problem has been addressed by Gehrig and Dragotti in [5] for
the distributed compression of the plenoptic function. In this sense,
we follow their approach in the context of the plenacoustic function.
In particular, we show how the different parameters of our setup can
be efficiently used in order to decrease the overall bit-rate needed to
transmit the acquired signals to a central base station while ensuring
a given reconstruction fidelity. We first illustrate the main ideas of
our distributed coding scheme by means of simple synthetic sources
made of diracs. These results are then extended to periodic bandlim-
ited signals with appropriate use of oversampled analog-to-digital
(A/D) conversion. Apart from its economical justification, the use of
oversampling to increase conversion accuracy is usually considered
to be dramatically inferior, in rate-distortion sense, to quantization
refinement. We however show that, in our setup, this type of conver-
sion is much more amenable to low-complexity distributed coding
and thus provide significant gains over simple A/D conversion. Note
that the benefits of oversampled A/D conversion in sensor networks
have already been demonstrated by Ishwar et al. in [6]. We finally
present some simulation results in order to confirm the effectiveness
of our scheme.

The outline of the paper is as follows: in Section 2, we present
the setup under consideration along with our problem statement.
Section 3 provides a precise description of the distributed compres-
sion scheme for both streams of diracs and periodic bandlimited sig-
nals. Simulation results are given in Section 4. We finally offer some
conclusions and future directions of research in Section 5.

2. ACOUSTIC SENSOR NETWORKS

The problem setup that we consider in this paper consists of M per-
fectly synchronized acoustic sensors (microphones) evenly spaced
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Fig. 1. The acoustic sensor network under consideration with M =
4 microphones.

along a line. The distance between two consecutive microphones is
l. The origin of the axis is set in the middle of the array such that the
position of microphone m, denoted pm, is given by

pm =

„
m −

M + 1

2

«
l (1)

for m = 1, 2, . . . , M . The source s(t) is an acoustic wave propa-
gating at speed c with a direction α ∈ [αmin, αmax] ⊂ [−90, 90]
[deg] from a distance d ≥ 0 of the origin. We assume that the above
parameters are known to both the sensors and the central base sta-
tion. Our setup is illustrated in Figure 1. For the scope of this paper,
we will work under the far-field assumptions, i.e. that the signal re-
ceived at the microphone array can be accurately modelled as a plane
wave with a constant attenuation factor. Without lost of generality,
this factor will be set to 1. The signal xm(t) recorded at microphone
m can thus be generally expressed as

xm(t) = s(t − τm) + nm(t) (2)

where τm is the propagation delay and nm(t) is an additive white
Gaussian noise independent of both s(t) and nm′(t) for m′ �= m.
In this work, we will however not take noise into account and con-
sider the received signals to be simply delayed versions of the source
signal. Extension of the material presented here to the noisy case is
currently under investigation. Note that τm can be easily computed
as

τm =
d − pm sin α

c
. (3)

In this context, we address the problem of designing an efficient
distributed compression scheme that allows the acoustic sensors to
transmit their signal to a central base station in a power-efficient
manner, i.e. using low-complexity operations and limited bit-rates.

3. DISTRIBUTED COMPRESSION

3.1. Background

In their celebrated paper [2], Slepian and Wolf showed that the loss-
less encoding of two correlated discrete random sources can be per-
formed separately without any loss in the overall rate, provided that
the correlation is known at both the encoders and the decoder. For
this result to be applicable from a signal processing viewpoint, it
is thus necessary to represent the signals encountered in practice in
such a way that they fall into the framework considered by the afore-
mentioned authors. To this end, we show in the next two subsections
how this goal can be achieved using oversampled A/D conversion
and some a priori knowledge about our problem setup.

3.2. Streams of diracs

Consider first the source s(t) modelled as a sequence of K diracs
of unit weight, located at time positions tk for k = 1, 2, . . . , K .
The purpose of this model is not to provide an accurate represen-
tation of real audio signals, but to introduce the main ideas behind
our distributed coding strategy. Note that the concepts developed in
this section can be applied to the dual problem where diracs in the
frequency domain translate into complex exponentials in the time
domain. Let us denote by tk,m the time of arrival (TOA) of the k-th
dirac at microphone m. It can be easily computed as

tk,m = tk + τm = tk +
d − pm sin α

c
. (4)

Assume that the K diracs arrive at all the microphones within some
time interval [0, T ) for T > 0.

Let us first consider a setup with only M = 2 microphones.
Their goal is to provide the central base station with an accurate
description of their observation. In this scenario, this amounts to
transmit the TOA of the diracs. Since we want a limited trans-
mission rate, the observation interval [0, T ) is divided into n bins
of duration Ts = T/n. Each tk,m is quantized into the bin in-
dex bk,m = �tk,m/Ts� ∈ {0, 1, . . . , n − 1} and transmitted using
B = �log2(n)� bits. The reconstructed TOAs t̂k,m are computed as

t̂k,m = Tsbk,m + Ts/2. (5)

At this point, the overall transmission rate is R = 2KB/T bits per
second. However, by taking into account the geometrical properties
of the model introduced in Section 2, we can see that the delay be-
tween the signals received at microphones 1 and 2 is given by τ2,1 =
tk,2 − tk,1 = −(l sin α)/c for all k. Since α ∈ [αmin, αmax], it
holds that

tk,2 − tk,1 ∈

»
−

l sin αmax

c
,−

l sin αmin

c

–
. (6)

This can be equivalently expressed in terms of quantization indexes
as

bk,2 − bk,1 ∈

»
−

‰
l sin αmax

Tsc

ı
,−

—
l sin αmin

Tsc

�–
. (7)

The difference between bk,1 and bk,2 can thus be computed using
only B1 = �log2(δ + 1)� bits where δ = �(l sin αmax)/(Tsc)� −
�(l sin αmin)/(Tsc)�. Note that when αmin = αmax �= 0, this
difference is non-zero since quantization still introduces a one-bin
uncertainty. A similar analysis is provided by Gehrig and Dragotti
in the context of the distributed compression of the plenoptic func-
tion [5]. In that paper, they present a simple and efficient distributed
coding scheme that can be directly applied to our problem. The idea
is that microphones 1 and 2 respectively send the last B1 bits of
bk,1 and b̃k,2 = bk,2 + �(l sin αmax)/(Tsc)�. They also transmit
complementary subsets of the first B2 = B − B1 bits. This allows
to perfectly decode both bin indexes at the central base station and
is proved to be optimal (in the sense that it achieves the Slepian-
Wolf bounds) when bk,1 and b̃k,2 − bk,1 are uniformly distributed in
{0, 1, . . . , 2B−1} and {0, 1, . . . , δ}, respectively, with δ = 2B1−1.
The interested reader is referred to [5] for a complete description of
the scheme.

The use of the aforementioned coding strategy is easily seen to
require an overall transmission rate of R = K(B + B1)/T bits per
second. It thus provides a gain of G = KB2/T bits per second with
respect to the case where the geometrical information is not taken
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Fig. 2. Sequential decoding with multiple microphones.

into account. As the sampling frequency 1/Ts is increased, we have
that

G =
K

T
(B − B1) (8)

≤
K

T
log2

»
cT

l(sin αmax − sin αmin) + Tsc

–
(9)

Ts→0
−→

K

T
log2

»
cT

l(sin αmax − sin αmin)

–
. (10)

The gain is therefore bounded and depends on the parameters of our
system. In particular, decreasing the distance l between the two mi-
crophones allows to increase the gain by reducing the possible dis-
parity between the TOAs. Also, having a more precise knowledge of
the source location allows to tighten the bounds αmin and αmax in
order to further decrease the overall bit-rate. This suggest an itera-
tive algorithm, where the central base station would feedback to the
sensors an estimate of the direction of arrival (DOA). This estimate
would in turn allow the sensors to reduce their transmission rates
while maintaining a constant reconstruction accuracy or conversely,
to decrease the distortion while keeping constant bit-rates.

Let us now turn our attention to the case with M > 2 micro-
phones. When quantization is not considered, the geometry of our
system allows to compute the TOAs of the K diracs at any micro-
phones based solely on what is recorded at two different positions.
The quantization process, however, introduces uncertainty (noise) in
the reconstructed TOAs. In this context, the use of a larger number
of microphones becomes beneficial since it exploits spatial redun-
dancy. It allows, for example, to increase the robustness of time-
delay estimation schemes that may be performed at the base station.
Note that a similar argument motivates the encoding of every dirac’s
position at each microphone. When considering more than two sen-
sors, our distributed coding scheme can easily be extended as fol-
lows: for each dirac k, two arbitrary consecutive sensors, say i and
i + 1, encode their bin index as described previously. Microphone
j /∈ {i, i + 1} then only send the last B1 bits of b̃k,j defined as

b̃k,j = bk,j + �(l sin αmax)/(Tsc)�. (11)

The decoder retrieves the bin index of microphones i and i + 1 and
then sequentially decodes the bin index of their direct neighbor. This
process is illustrated in Figure 2.

In this case, the overall coding rate can be computed as R =
K[B + (M − 1)B1]/T bits per second. This strategy provides thus
a gain of G = K(M − 1)B2/T bits per second with respect to the
case where the geometrical information is not taken into account.
We note a linear increase with the number of sensors.

3.3. Periodic Bandlimited Signals

We will now extend the distributed coding scheme explained in the
previous subsection to periodic bandlimited signals by means of over-
sampled A/D conversion. Improving the reconstruction accuracy by
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Fig. 3. Quantization threshold crossings of two periodic bandlimited
signals: (a) s1(t) = s(t − τ1) and (b) s2(t) = s(t − τ2) for τ1 =
0.1 [s], τ2 = 0.15 [s], T = 1 [s] and W = 9. The quantization
thresholds are marked with dashed lines and the reconstruction levels
with dotted lines.

oversampling is often considered as significantly inferior to refin-
ing quantization (simple A/D conversion). This is mainly motivated
by the error behavior given by the white noise model under linear
reconstruction, namely, for a signal s(t) and its reconstruction ŝ(t),

E[|s(t) − ŝ(t)|2] =
∆2

12r
(12)

where ∆ denotes the quantization step size, r the oversampling ra-
tio and E[·] the expectation. However, it has been recently proved
that the error-rate characteristics of oversampled A/D conversion
can be drastically improved using non-linear reconstruction algo-
rithms, referred to as consistent. More precisely, it can be shown [7]
that for real periodic bandlimited signals of period T and having
W = 2M + 1 non-zero Fourier coefficients, the reconstruction
mean-squared error (MSE) behaves as O(1/r2) as opposed to the
O(1/r) given by Equation (12). This is provided that the number
Q of quantization threshold crossings (QTC) in the interval [0, T ) is
greater than W . Moreover, for a small enough sampling interval Ts,
the sequence of QTCs completely determines the quantized samples
of s(t) and vice-versa [8]. Note that the first QTC level in the inter-
val [0, T ) is described with q1 bits and the subsequent ones can be
specified using only 1 bit [8]. In this case, the quantized signal can
be encoded with a rate of

R =
Q

T
B +

Q − 1 + q1

T
(13)

bits per second, where B is defined as in the previous subsection.
Combined with the MSE behavior of consistent reconstruction algo-
rithms, we directly obtain an exponentially decaying error-rate char-
acteristic.

We can now make use of the above considerations for the prob-
lem at hand. The key to our approach is to describe the signals to
be transmitted by the different microphones as a sequence of QTCs.
More precisely, for each time interval [nT, (n + 1)T ) with n ∈ N,
the microphones sample their observed signal with a sampling fre-
quency 1/Ts, high enough such as to ensure a one-to-one mapping
between the quantized samples and the QTCs. The number of re-
construction levels is chosen such as to have at least W QTCs. This
process is illustrated in Figure 3. For each QTC k, the time position
can be encoded using the method described in the previous subsec-
tion. Note that each QTC level only needs to be encoded by one
microphone. At the central base station, the time positions of the
QTC sequences can be decoded within an accuracy of Ts seconds.
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Fig. 4. Error-rate curves obtained for α0 = 90 [deg]. (a) Over-
sampled A/D conversion with (plain) and without (dashed) geomet-
rical considerations for M = 2 microphones. (b) Simple A/D
conversion (dashed) and our distributed coding scheme (plain) for
M ∈ {2, 3, 4, 5} (from right to left).

The quantized samples of the transmitted signals are then recovered
and a consistent reconstruction algorithm is applied to reconstruct
the signals. Note that we could also base our reconstruction directly
on the QTCs using stable interpolation techniques such as the ones
presented in [9]. For M microphones, the overall rate can thus be
computed as

R =
Q

T
(B + (M − 1)B1) +

Q − 1 + q1

T
(14)

bits per second, where B and B1 are defined as in the previous sub-
section. Notice that q1 can be made arbitrarily small if we encode
the QTC levels over multiple periods [8]. It will be thus neglected in
the simulation results presented in the next section.

4. SIMULATION RESULTS

We now present the error-rate characteristics obtained numerically
for our distributed coding strategy. The simulations are averaged
over 500 randomly generated periodic bandlimited signals s(t) with
period T = 1 [s] and W = 7 non-zero Fourier coefficients. The
parameters of our system are c = 330.7 [m/s], l = 0.5 [m] and
αmax = −αmin = α0. All the curves are plotted on a per micro-
phone basis.

We first set α0 = 90 [deg]. In Figure 4(a), we show the results
obtained for M = 2 microphones using oversampled A/D conver-
sion, with and without taking into account the geometrical properties
of our setup. We clearly see the gain achieved by our distributed cod-
ing scheme. Figure 4(b) compares the error-rate curves between our
coding strategy and simple A/D conversion applied independently
at each sensor for various array configurations. We observe that for
M > 2 sensors, our technique outperforms simple A/D conversion
for which distributed coding techniques would involve significantly
higher complexity and latency. Moreover, we are confident that more
efficient oversampled A/D conversion schemes can be used to further
improve these results, in particular for the two-microphone setup.
We now consider M = 2 sensors. Figure 5(a) depicts the curves
corresponding to different values of α0 to illustrate the gain provided
by a more accurate knowledge of the DOA. Finally, Figure 5(b) in-
vestigates how the distance l affects the error-rate characteristics.
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Fig. 5. Error-rate curves obtained for M = 2 microphones. Our
distributed scheme for (a) α0 ∈ {10, 50, 90} [deg] (left to right) and
(b) l ∈ {0.5, 1, 1.5, 2} [m] (left to right).

5. CONCLUSIONS

In this paper, we have presented a distributed compression scheme
for acoustic sensor networks. We have shown how oversampled A/D
conversion can be efficiently used in this context to significantly re-
duce the overall transmission bit-rate. Ongoing research is focusing
on extending our approach to noisy signals and oversampled A/D
conversion schemes with better accuracy. Tradeoffs between time
and frequency domain coding are also under investigation.

6. REFERENCES

[1] T. Ajdler, L. Sbaiz, and M. Vetterli, “The plenacoustic function
and its sampling,” to appear in IEEE Trans. Signal Processing,
2005.

[2] D. Slepian and J. K. Wolf, “Noiseless coding of correlated in-
formation sources,” IEEE Trans. Inform. Theory, vol. 19, pp.
471–480, 1973.

[3] A. D. Wyner and J. Ziv, “The rate-distortion function for source
coding with side information at the decoder,” IEEE Trans. In-
form. Theory, vol. 22, no. 1, pp. 1–10, January 1976.

[4] R. L. Konsbruck, E. Telatar, and M. Vetterli, “On the multiter-
minal rate-distortion function for acoustic sensing,” to appear in
IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing, 2006.

[5] N. Gehrig and P. L. Dragotti, “Distributed compression of the
plenoptic function,” in IEEE International Conference on Image
Processing, October 2004, vol. 1, pp. 529–532.

[6] P. Ishwar, A. Kumar, and K. Ramchandran, “Distributed sam-
pling for dense sensor networks: a bit-conservation principle,”
in IEEE International Symposium on Information Processing in
Sensor Networks, 2003, pp. 17–31.

[7] N. T. Thao and M. Vetterli, “Reduction of the MSE in R-times
oversampled A/D conversion from O(1/R) to O(1/R2),” IEEE
Trans. Signal Processing, vol. 42, no. 1, pp. 200–203, January
1994.
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