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ABSTRACT

We propose a distributed multiresolution representation of sen-
sor network data so that large-scale summaries are readily
available by querying a small fraction of sensor nodes, any-
where in the network, and small-scale details are available
by querying a larger number of sensors, locally in the region
of interest. A global querier (such as a mobile collector or
unmanned aerial vehicle) can obtain a lossy to lossless repre-
sentation of the network data, according to the desired reso-
lution. A local querier (such as a sensor node) can also obtain
either large-scale trends or local details, by querying its im-
mediate neighborhood. We want the encoding to be robust
to arbitrary, even time-varying, wireless communication con-
nectivity graphs. Thus we want to avoid cluster heads or de-
terministic hierarchies that are not robust to single points of
failure. We propose a randomized encoding which enables
both robustness, and distributed computation that does not
require long distance coordination or awareness of network
connectivity at individual sensors. Our distributed encoding
algorithm operates on local neighborhoods of the communi-
cation graph.

1. INTRODUCTION

Sensor networks may have a significant impact on sciences
that previously had limited or no data, but scientists must be
able to deal with the huge quantities of data measured by sen-
sor networks. Signal processing will play an important role
in analyzing and compressing such large quantities of data.
Information of significant interest to the querier, such as sum-
maries, averages, or anomalies, should be readily available
from anywhere in the network. The querier should also be
able to obtain all the data if needed, but in a multiresolution
refinable way. Since the functions of interest may depend on
the end application, or vary for different types of queriers, the
sensor network should be able to serve diverse queries.

As technology advances make wireless sensor motes smaller
and cheaper, communication continues to be the dominant
cost in power consumption. Furthermore, in wireless com-
munications, connectivity is highly time-varying and spatially

nonuniform. Thus signal processing algorithms for sensor
networks should be robust and distributed, without requiring
rigid coordination, synchronization, and knowledge.

In this paper, we propose a distributed multiresolution
representation of sensor network data that encodes on local
neighborhoods and is robust to arbitrary, time-varying com-
munication links. The main contributions of our paper are:

• Multiresolution querying. Our algorithm guarantees,
with high probability, that large-scale averages and dif-
ferences are available by querying a small number of
sensors, anywhere in the network. Small-scale averages
and differences are available, with high probability, by
querying a larger number of sensors, locally in the re-
gion of interest. The original data can be reconstructed
without error by querying one symbol from every node.

• Distributed robust encoding. Each sensor independently
and randomly encodes on local neighborhoods of the
communication graph. Thus sensors do not need to co-
ordinate with or be aware of other sensors’ states, and
no routing over relays is needed. Furthermore our al-
gorithm is robust to arbitrary, time-varying communi-
cation graphs in which links can fail. Sensors do not
need to know the network connectivity.

1.1. Past Work

Distributed multiresolution and wavelet algorithms have been
proposed [1, 2, 3, 4, 5, 6]. These past works typically have
sink models where a root node collects all the information.
Layers of intermediate cluster heads collect data from their
subregions of the network and compute the wavelet coeffi-
cients. The wavelet transform decomposition tree is thus over-
layed on the network communication graph. These schemes
are not robust to single node or link failures. They require
rigid coordination and synchronization between nodes, as well
as knowledge of the network connectivity at individual nodes.
These schemes have restrictive models on the network con-
nectivity graph such as grids or trees.

Consensus algorithms have been proposed [7, 8, 9, 10] to
compute the average of sensor network data. Our proposed
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scheme has a similar goal of using only local computation
that does not require knowledge or coordination, and formu-
lating the global effect in terms of adjacency matrices of the
communication graph. However, consensus algorithms are
iterative schemes whose convergence relies on properties of
the 1-hop adjacency matrix of the graph. Our proposed algo-
rithm is not iterative and does not require very large numbers
of communications to mix the data. Our scheme further uti-
lizes properties of more general adjacency relationships of the
graph.

Network coding algorithms [11] encode independent source
data in a distributed manner and guarantees decodability of all
of the original data. It is possible that such schemes may be
extended to allow decoding of subsets of the original data.
These schemes do not allow, however, encoding of functions
of the original data, such as averages or transforms, unless
clusterheads first collect and compute the functions.

2. MULTIRESOLUTION GRAPH-DEPENDENT
BASES

A sensor network can be represented by a finite undirected
graph G = (V, E), where sensors are located on the ver-
tices V and communication links are represented by edges
E. Each sensor v ∈ V makes a measurement x(v) ∈ R.
Let the number of sensor nodes be n = |V |, then the aggre-
gate sensor data is x = [x(v1), . . . , x(vn)]T ∈ R

n. The ver-
tex set V of a graph forms a complete metric space, with the
shortest path distance metric (in hops) d(vi, vj), vi, vj ∈ V .
The h-hop neighborhood of a node vi ∈ V is defined as
Nh(vi) = {vj ∈ V : d(vi, vj) ≤ h}.

We can thus define functions f(v), that are mappings from
the vertex set V into the reals R, and have localized support
on V . In other words, a graph-dependent function takes the
weighted sum of the sensor values in an h-hop neighborhood,
and is zero outside the neighborhood.

fi,hi
(vj) =

{
wij for vj ∈ Nhi(vi),
0 for vj �∈ Nhi

(vi)

for i ∈ {1, . . . , |V |} and hi ∈ N. These functions can be
scaled to different resolutions, corresponding to different neigh-
borhood sizes hi, and shifted to center over each node vi in the
graph. We want to construct sets of graph-dependent bases,
{fi,hi = [fi,hi(v1), . . . , fi,hi(vn)]}, which span R

n, so that
every possible data vector measured by the sensor network
can be uniquely represented as a linear combination of the
basis functions, x =

∑
i cifi,hi

.
Motivated by simple Haar scaling and wavelet functions

consisting of averages and differences, we define two graph-
dependent bases.

Weighted Average Basis Function: computes the weighted
average on the hi-hop neighborhood of node vi, placing more

Fig. 1. A locally-supported graph-dependent basis function.

weight on the data measured at vi.

fi,hi
(vj) =

⎧⎪⎨
⎪⎩

a
di,hi

if vj ∈ Nhi
(vi) \ vi,

(1 − a) + a
di,hi

if i = j,

0 otherwise

where 0 < a < 1
2 is a constant and di,hi

= |Nhi
(vi)| ≥ 1

is the degree of the hi-hop neighborhood. Note that all the
weights are nonnegative.

Weighted Difference Basis Function: computes the weighted
difference of the value of node vi to the values of its hi-hop
neighbors.

gi,hi
(vj) =

⎧⎪⎨
⎪⎩

− b
di,hi

if vj ∈ Nhi
(vi) \ vi,

(1 + b) − b
di,hi

if i = j,

0 otherwise

where b > 0 is a constant and di,hi
= |Nhi

(vi)| ≥ 1. Note
that the weight on node vi’s value is positive (1+b−b/di,hi

>
0) and the weights on all other hi-hop neighbors of vi are
negative (−b/di,hi < 0).

It is worth noting that an unweighted average or differ-
ence would not generate a basis for arbitrary graphs. We can
easily construct counterexamples where subgraphs of the net-
work connectivity are fully connected, resulting in the same
unweighted average centered at different sensors. But if each
node stores both the weighted average and weighted differ-
ence basis coefficients, at no extra communication cost, then
the querier can obtain the unweighted average (and differ-
ence) of the h-hop neighborhood of the queried node as 1+a

2a fi,hi
−

1−a
2a gi,hi

(and
(

d
2a + d

2 + 1
)
fi,hi −

(
d
2a − d

2 − 1
)
gi,hi), set-

ting a = b in the functions above.
A set of graph-dependent functions can be equivalently

expressed in matrix form.

W =

⎡
⎢⎣

f1,h1(v1) . . . f1,h1(vn)
...

. . .
...

fn,hn
(v1) . . . fn,hn

(vn)

⎤
⎥⎦

The set of functions {f1,h1 , . . . , fn,hn
} forms a basis iff the

matrix W is invertible. The expansion and reconstruction can
now be written as y = Wx and x = W−1y. Notice that W
has the sparsity structure of the h-hop connectivity matrix H
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of the graph, where Hij = 1(vj ∈ Nhi(vi)) and Wij = 0 iff
Hij = 0.

Fact 1. For any nonnegative integers h1, . . . , hn ∈ N, the set
of Weighted Average (or Weighted Difference) graph-dependent
functions {f1,h1 , . . . , fn,hn} (or {g1,h1 , . . . ,gn,hn}) defined
above, forms a basis for R

n over any finite undirected graph
G = (V, E), |V | = n,

Proof. For any undirected graph G = (V, E), with |V | = n,
define a stochastic nonnegative matrix A which computes the
average on local neighborhoods: Aij = 1

|Nh(vi)| if vj ∈
Nh(vi); 0 otherwise. Since A1 = 1, 1 is an eigenvalue of
A with corresponding positive eigenvector 1. By the Perron-
Frobenius theorem for nonnegative matrices [12], the spectral
radius ρ(A) = 1. Since A has strictly positive diagonal en-
tries, define F̂ = A + cI and Ĝ = A − cI for some constant
c > 1. Thus 0 is not an eigenvalue of either F̂ or Ĝ, and
hence both F̂ and Ĝ are invertible. Multiplying by a scalar
does not change the rank of a matrix, and thus the stochastic
matrices F = 1

1+c F̂ and G = 1
1−cĜ are invertible.

Thus we can easily construct locally supported graph de-
pendent bases. We defined two simple bases that allow the
querier to obtain averages or detect anomalies, at different
resolutions corresponding to the neighborhood hop-size. Our
framework guarantees a basis set for any communication con-
nectivity graph, and for any choice of neighborhood hop-size
parameters {h1, . . . , hn}. In fact each sensor node can choose
the neighborhood size parameter of its encoding basis func-
tion randomly and independently from other nodes. Thus our
framework allows us to now design a robust distributed en-
coding algorithm which allows sensors to operate indepen-
dently without global coordination or knowledge. The degree
distribution according to which each node chooses its neigh-
borhood size then determines the probabilistic model for mul-
tiresolution querying, as well as the encoding communication
cost.

3. RANDOM DISTRIBUTED ENCODING
ALGORITHM

Distributed Encoding Algorithm. Each node in the sensor
network computes and stores its encoding coefficient accord-
ing to the following algorithm:

• Encoding node vi randomly and independently chooses
a neighborhood size Hi according to an encoding de-
gree distribution p(h).

• Encoding node vi sends a request for data to all data
nodes vj in its Hi-hop neighborhood, down the mini-
mum spanning tree.

• Data nodes vj compute and send the aggregated sum of
their data back up the tree to vi.

• Encoding node vi then stores the coefficient computed
using the graph-dependent basis function fi,Hi

(or gi,Hi
).

Fig. 2. The encoding algorithm randomly generates a bipar-
tite graph between encoding nodes and data nodes.

We now describe each of the encoding steps in detail to
show that this encoding algorithm can be implemented in a
distributed and robust way. The first step requires the design
of an appropriate degree distribution p(h), which is key in
controlling the tradeoff between the communication cost and
the querying availability. Each encoding node vi sends to its
1-hop neighbors, a request for data (vi, Hi, hop-count), where
vi serves as a request ID, Hi is the hop parameter chosen iid
∼ p(h), and hop-count = 0. If the 1-hop neighbors have not
received the data request ID previously, and hop-count ≤ Hi,
they augment the hop-count and send the data request to their
1-hop neighbors. The process repeats until hop-count = Hi.
This process thus transmits a single data request down the
minimum spanning tree between the encoding node vi and
all the data nodes in its Hi-hop neighborhood. The commu-
nication cost per encoding node of this data request is thus
O(|NHi(vi)|), the number of nodes in the Hi-hop neighbor-
hood of vi.

When the data request hop-count reaches Hi, the leaf data
nodes of the tree send their data back up the tree to their par-
ents. All intermediate nodes in the tree compute the aggregate
sum of their data with their children’s data, and sends the ag-
gregate to their parents. The process repeats until the root
node vi is reached. Finally sensor node vi can compute and
store its coefficients fi,Hi and gi,Hi . This process thus trans-
mits a single data symbol on each link of the spanning tree,
again at a cost of O(|NHi

(vi)|).
Note that the minimum spanning tree can be maintained

in a distributed manner by each node remembering only its
parent in the tree. Each sensor is the root of one tree, and a
child in many trees. The number of trees it is a member of,
in other words the source node degree distribution, is induced
by the encoding node degree distribution. The average degree
can thus be made small enough. Furthermore, the decoder
needs to know the encoding graph in order to decode, by in-
verting the matrix W. It is sufficient for each encoding node
to encode a header containing the indices of the data nodes it
encoded. This adds an overhead cost of O(E(p(h))), which
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should be small relative to the data packet size.
Since our encoding functions form a basis on any commu-

nication graph, this algorithm does not require a deterministic
tree structure around each node. Thus our encoding algorithm
is robust to link or node failures. This encoding algorithm can
be represented by a bipartite graph between the data nodes
and the encoding nodes, where each sensor is both a data node
and an encoding node, by flattening the h-hop neighborhood
trees. The communication cost is proportional to the number
of edges in the bipartite graph.

The multiresolution querying can now be modeled prob-
abilistically, as a function of the encoding degree distribution
p(h). Suppose a querier wants to obtain a scale-h coefficient,
corresponding to an h-hop neighborhood. Each queried node
has a scale-h coefficient with probability p(h). Let Y de-
note the number of nodes queried until the decoder receives a
scale-h coefficient. Thus Y is a geometrically distributed ran-
dom variable with mean µ = 1

p(h) and variance σ2 = 1−p(h)
(p(h))2 .

Since P (Y ≤ y) = 1 − (1 − p(h))y , the probability of
not receiving the desired scale coefficient exponentially de-
cays. The querier receives a scale-h coefficient with proba-
bility 1 − (1 − p(h))y by querying y nodes.

The communication cost depends on the encoding degree
distribution p(h) and the communication graph. The com-
munication cost per encoding node is O(|NHi

(vi)|), and thus
the overall communication cost of our encoding algorithm is
O(

∑n
i=1 |NHi

(vi)|).
Since the size of the h-hop neighborhood depends on the

communication graph, we compute the average communica-
tion cost per node for randomly generated graphs. E[|NHi(vi)|] =∑R

h=0 E[|NHi
(vi)| | Hi = h]P (Hi = h). Let F (h) =

E[|NHi
(vi)| | Hi = h]. If the network communication graph

is connected, as h goes to the maximum degree R, F (h) goes
to n. When h = 0, F (h) = 1. F (h) for 0 < h < R is a
monotonically increasing function, and the shape depends on
the communication graph. To achieve an encoding commu-
nication cost per node of c(n), a sufficient condition on the
degree distribution p(h) is for E(p(h)) ≤ F−1(c(n)).

Our encoding algorithm uses the following encoding de-
gree distribution p(h), which allows us to traverse the tradeoff
between communication cost and querying availability. For
h = 0, . . . , R, p(h) = 1

c (α1e
−λ1h + α2e

−λ2(R−h)), where
α1 and α2 control the height of the peaks of the exponentials,
λ1 and λ2 control the decay rates, R is the largest degree, and
c is the normalizing constant.

4. DISCUSSION AND FUTURE WORK

Our multiresolution querying model is based on a distribution
on the neighborhood hop-sizes of the local bases. However
since we have made no assumptions on the communication
connectivity graph, a large hop parameter may not correspond
to a large number of nodes in the network, depending on the
connectedness of the graph. If the network connectivity is

changing in time, we may be able to obtain more consistent
resolution scaling by using larger time windows.

As future work, we want to define significance querying
models that are data driven, so that the most significant encod-
ing coefficients are readily available everywhere in the net-
work.
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