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ABSTRACT 

In a clustered, multi-hop sensor network, a large number of 

inexpensive, geographically-distributed sensor nodes each make 

measurements of a source, quantize them into binary sequences, 

and transmit them over one or more wireless hops to the 

clusterhead. When all local measurement data has been gathered by 

the clusterhead, it fuses them into a final estimate about the source. 

Two sources of error affect the clusterhead’s final estimate: (i) local 

measurement errors made by the sensor nodes because of noisy 

measurements or unreliable sensors; and (ii) bit errors affecting 

each hop on the wireless communication channel. Previous work 

assumed error-free communication or a single-hop cluster. We 

propose an optimal estimate that accounts for both of these sources 

of error. We show that this estimate significantly outperforms 

schemes that consider only the measurement error noise–both in 

terms of error counts and mean square error.       

1. INTRODUCTION 

In one scenario envisioned for wireless sensor networks,   many 

small, inexpensive nodes with sensing, processing and wireless 

communication capabilities are scattered over a field. They self-

organize into a clustered network; sense the environment; take 

measurements of a certain source; and send these measurements to 

their clusterheads via multi-hop wireless communication. Each 

clusterhead (CH) fuses the measurement data from the nodes in its 

cluster to determine a final estimate for that region of the network. 

Figure 1 shows a multi-hop cluster in a sensor network. The 

CH that collects and fuses the local data of the sensor nodes is 

shown in the center.  

We assume that the phenomenon being measured by the nodes 

in a single cluster has a correlation length that is larger than the 

diameter of a single cluster. In the ideal case of noise-free 

measurements and error-free computation, each node should then 

be making the same estimate about the phenomenon. The estimates 

made by the sensor nodes and the CH may, however, be incorrect. 

We focus on two sources of incorrect decisions: (i) local 

measurement and local estimation errors by each node in a cluster; 

and (ii) estimation fusion errors at the CH due to communication 

errors that corrupt the data transmitted by the nodes in the cluster.   

For communication induced errors, we take into account the 

multi-hop communication strategies used within clusters in 

clustering algorithms like those in [1,2]. Clearly, measurement data 

forwarded from nodes at the outer edge of a cluster will travel more 

hops, and thus be more vulnerable to communication error than 

those from nodes within one hop of the CH. An appropriate 

weighting of these measurements should thus depend on the 

number of communication hops they take. 

Figure 1. An example showing MICA2 sensor dots that have self-

organized into a two-hop cluster around the CH. Each node has a 

transmission range that depends on many conditions in its local 

environment but is generally less than 50 meters. 

In [3], an optimal distributed detection problem has been 

investigated for a multi-hop cluster. Each node makes a local hard 

decision, 0/1, and transmits the decision bit to the CH through 

multiple hops. It was show that the optimal estimate at the CH, 

based on the Maximum a Posteriori (MAP) criterion, is a weighted 

median. The error exponent of distributed detection problem with 

partial noise statistics has been studied in [4]. In [5], an optimal 

estimate, based on Minimum Mean Square Error (MMSE) criterion, 

has been proposed -- the estimate weights data from different 

sensor nodes according to their measurement noise variances. A 

power scheduling algorithm is also proposed. The asymptotic 

performance of distributed detection has been studied in [6].   

The rest of this paper is organized as follows. The optimal 

estimate is proposed in Section 2. Some initial numerical results are 

provided in Section 3. Conclusions and further work are discussed 

in Section 4.   

2. OPTIMAL MAP-BASED ESTIMATION IN A MULTI-HOP 

CLUSTER 

In a K hop cluster, suppose the value of the data source is 

uniformly distributed over ].0[ U Each node makes one 
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measurement of the source, quantizes the data, encodes the 

quantized output into an bitL  sequence, and transmits the this 

binary sequence to the processing center. We assume that the 

quantizer divides the whole interval ]0[ U  into LM 2 sub-

intervals of equal length ./ MU Without loss of generality, 

assume that .1 If the measurement data 

satisfies )],1(,( mmx then the quantizer output will be the binary 

sequence ms for decimal number .m It is easy to see that each ms has

the same prior probability of ./1 M  For this case, the MAP-based 

estimator of the date is equivalent to the Maximum Likelihood (ML) 

estimate.        

Assume that the communication channel between any pair of 

sensor nodes and between the CH and any node in the first hop is a 

Binary Symmetric Channel (BSC). In other words, if s and r are 

the transmitted and received bits, respectively, then the probability 

of an error after transmission is given by 

cpsrpsrp )1|0()0|1( and the probability a correct 

decision is received given by 

.1)1|1()0|0( cpsrpsrp  We also assume that each 

bit of the bitL binary sequence from the same sensor node is 

equally and independently vulnerable to error. It is easy to show 

that after a bit is transmitted over k hops that it is received 

incorrectly with probability: 
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From (1), it is clear that measurements received from nodes in 

the outer rings of the cluster are less reliable than those from nodes 

close to the CH. With knowledge of the communication pattern 

within the cluster, the CH can appropriately weight the data 

received from each ring and fuse all data into a final estimate about 

the source. 

2.1. Estimation without Measurement Noise 

Assume that there is no measurement noise and that all errors are 

due to quantization error and communication error. Note that 

quantization error is unavoidable since the number of quantization 

levels is limited to .2 LM Since the measurement data is 

uniformly distributed over ],  U0[ the quantized outputs 

Msss ,...,, 21 each occur with probability ./1 M  For the optimal 

estimate at the CH, we choose the ms that maximizes the posterior 

probability ),|( msrp given the received data r at the CH. 

Definition 1. Assume LYX }1,0{, are two bitL long binary 

sequences, the Hamming distance between X and Y is defined 
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If sk can be scaled such 

that ,:...:::...:: 2121 KK WWW where the sWk are positive 

integers and .1),...,,gcd( 21 KWWW The optimal MAP-based 

estimate is then: 
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Since ,1/)1( ,, KeKe pp the maximum of (2) is given by the 

minimum of the sum of the weighted Hamming distances. Thus the 

MAP estimate is given by 
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The performance of this estimate can be evaluated via a 

counting error probability (CEP) and mean square error (MSE). 

Since there is no measurement noise, suppose the measurement 

data is correctly quantized into .ms If the estimate at the CH is 

different from ,ms i.e., ,ˆ
msr one counting error occurs. The 

second measure, the MSE, is defined as the mean value of 

.ˆ
2

rsm

In [3], the detection error probability (DEP) is thoroughly 

investigated in multi-hop cluster sensor networks. Since we assume 

each bit in one binary sequence is vulnerable to error independently 

and with identical probability, we can show that, at the CH, one 

counting error is equivalent to at least one bit error among the 

bitL binary sequence. Define BitP  as the bit error probability at 

the CH for each of the L  bits. We know that CEP, ,CountP is given 

by  

.11
L

BitCount PP                                 (3) 

The rightmost bit in a L  bit binary sequence has weight 1 

while the leftmost bit has weight .2 1L  The MSE resulting from a 

bit is ,2
21l where l is the position of the bit in the sequence. The 

estimation MSE at the CH, given BitP , can thus be derived as 

Bit
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From (3) and (4), we know that  
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2.2. Estimation with Measurement Noise

Consider the estimation problem in Section 2.1, but now assume 

that the measurement data is noisy. Assume that the noise is 

bounded so that the measurement data is still uniformly distributed 

over ].0[ U We also assume that, due to the measurement noise, 

with probability ,, jip a measurement is quantized into js  instead of 

the real value .is  Define ],[ ,1, Miii ppp note that 
M

j
jip

1
, .1

Theorem 2: In a multi-hop cluster, assume that the CH receives 

],...,,[
1,12,11,11 Nrrrr  samples from nodes in the first ring, 

],...,[
2,22,21,22 Nrrrr  from nodes in the second ring, and so on. 

Assume that the bit error probabilities for samples from different 

rings are ....,,, ,2,e,1 Kee ppp  Define ./)1(ln ,, kekek pp  and 

assume that sk can be scaled up so 

that ,:...:::...:: 2121 KK WWW  where sWk are positive 

integers with .1),...,,gcd( 21 KWWW The MAP estimate of the 

source is given by 
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MAP estimate is the ms  that maximizes 
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estimate r̂  is thus given by 
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3. INITIAL NUMERICAL RESULTS 

In this section, we present some initial results on the performance 

of the proposed weighted estimation algorithm. For now, we only 

consider the case in which there is no measurement noise, as in 

Theorem 1. One simple estimation scheme, if we do not consider 

the effect of multi-hop communication error, is to choose an r̂ such 

that .),(minargˆ
1 1

,
10,

K

k

N

n
mnk

Mms

k

m

srdr We compared the weighted 

scheme against this simple unweighted one. The estimates’ 

performance is compared in terms of both CEP and MSE. Assume 

that each sensor node will transmit a binary sequence of length 

.5L Without measurement noise, the quantizer output, ,ms is one 

of 322 LM binary sequences with equal probability 1/32. The 

numerical results are averaged over 106 runs. 

Figure 2 provides a performance comparison between the 

weighted estimation scheme and the simple unweighted scheme for 

different one hop communication error rates .cp The cluster is 

assumed to be a 4-hop cluster and there are )12( k  nodes in ring 

.k From the Figures we can see that the weighted estimation 

scheme always outperforms the unweighted scheme, in term of 

both CEP and MSE. In Fig..b, we also compare the MSEs from 

both simulations and analytical results derived from CEP. It shows 

that the MSE is closely related to CEP, as shown in (5).  

In Fig. 3, performance comparisons are conducted for different 

cluster sizes. Assume there are )12( k  nodes in ring k and the 

one-hop bit error rate is fixed at .1.0cp For a one-hop cluster, the 

weighted estimation scheme degrades to the simple scheme; this is 

confirmed in Fig. 3. For multi-hop clusters, we can see that the 

weighted estimation scheme significantly outperforms the simple 

one. As the cluster size increases, more samples reach the CH 

through multiple hops; the accumulated bit errors results in these 

samples make them more unreliable. These unreliable samples 

dominate all other samples within the cluster, causing the 

estimation error to increase after a certain point. On the other hand, 

the weighted scheme makes proper use of these samples from the 

outer rings to improve the system performance. 
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Fig.2.a. Performance comparison in term of CEP. 
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Fig. 2. Estimation performance comparisons with different 

s.cp The cluster size 4K with )12( k  nodes in ring .k    
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Fig.3.a. Performance comparison in terms of CEP. 
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Fig. 3. Performance comparisons with different cluster 

sizes. ,1.0ep and there are )12( k  nodes in ring .k     

4. CONCLUSION 

Distributed estimation in clustered sensor networks is investigated 

and the optimal estimate is the quantizer output that minimizes a 

weighted distance metric. Numerical results showed that the 

optimal estimate significantly outperforms unweighted schemes. 

Future work will include investigating the estimation error bound 

and power scheduling for distributed estimation in sensor networks.
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