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ABSTRACT

Recently there has been a significant interest in distributed detection
and data fusion with analog-relay amplifier local processing under
a global power constraint [1–3]. In particular, it was shown in [3]
that the optimal fusion performance for a distributed stochastic sig-
nal detection is achieved by a finite number of sensors. In this paper,
we propose a sensor system optimization method based on the Bhat-
tachrya error exponent. In addition to the global power constraint we
also consider the case in which the total available bandwidth may
also be limited. Assuming an equi-correlated signalling model we
derive the error exponents to the Bayesian fusion performance for
asymptotically large systems. Again we optimize the sensor sys-
tem size based on the Bhattacharya error exponent and provide sim-
ple rules that are valid for either the low or high observation SNR
regimes.

1. INTRODUCTION

Fuelled by various applications of low-power wireless sensor net-
works, recently there has been a growing interest in design and anal-
ysis of distributed detection systems under sensor-to-fusion center
communication constraints. In this paper, we consider a sensor sys-
tem subjected to both finite global bandwidth as well as power con-
straints such that as the number of nodes in the system increases the
available power per node linearly decreases. Distributed detection
of a deterministic and a stochastic Gaussian signal in such a network
was previously considered in [1–4] and [5], respectively. Though not
the optimal, all of them confined the local processing to the special
case of analog relay amplifier processing. This greatly facilitates the
analysis and can also give useful insight into the performance with
more general quantized local decision schemes. Analog relay pro-
cessing has also shown to perform very well in the presence of ad-
ditive noise and is well-suited for low-power sensor networks.Thus,
in this paper we also consider the case of analog processing at the
sensor nodes.

It was shown in [2] and [3], respectively, that the fusion perfor-
mance of distributed detection of a deterministic signal in a global
power-constrained sensor system monotonically improves with in-
creasing system size under both orthogonal and non-orthogonal sensor-
to-fusion center communications. In other words, it is always better
to divide the available total power among as many sensor nodes as
possible. In contrast, [5] showed that this is no longer true if the
signal to be detected is a stochastic (Gaussian) signal. In particular,
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assuming orthogonal signalling [5] showed that the Bayesian fusion
probability of error is minimized by a finite number of nodes n0 for
any given total power constraint. Beyond the optimal value n0, any
attempt to include more nodes to the system will degrade the perfor-
mance.

In this paper we extend previous work mentioned above, and in
particular the results of [5]. First, we propose a system optimiza-
tion method to obtain the optimal number of sensor nodes that re-
sults in the best Bayesian fusion performance. Second, we gener-
alize the situation considered in [5] by also taking into bandwidth
constraints. Assuming that sensor-to-fusion center communication
is non-orthogonal we derive the fusion performance under a global
system power constraint. We show that the performance is still op-
timized by a finite number of sensors and obtain simple expressions
for the optimal number of sensors that are valid for either the low or
high observation SNR regimes.

The remainder of the paper is organized as follows: In Section
2 we present our sensor system model and derive the optimal fusion
detector for a stochastic Gaussian signal. In Section 3 we investigate
the fusion performance via error exponents, derive expressions for
the optimal sensor system size n0 and provide numerical examples.
Section 4 concludes the paper.

2. SYSTEM MODEL AND OPTIMAL FUSION

A binary hypothesis testing problem in an n-node sensor system is
assumed. The null and alternative hypotheses are denoted by H0 and
H1, respectively, having corresponding prior probabilities P (H0) =
π0 and P (H1) = π1. Under the alternative hypothesis the observed
stochastic process consists of a Gaussian signal, denoted by Xk for
k = 1, · · ·n, corrupted by additive Gaussian noise. The k-th node
observation zk can be written as

H0 : zk = vk

H1 : zk = Xk + vk, (1)

where the collection of observation noise samples and the collection
of desired signal samples are distributed as v ∼ N (0, Σv) and X ∼
N (0, Σx), respectively, and 0 denotes the n-vector of all zeros. In
this paper, we concentrate on the case in which both vk’s and Xk’s
are independent and identically distributed (iid) sequences so that
Σv = σ2

vI and Σx = σ2
xI where I is the n × n identity matrix.

Each local sensor processes its observation zk independently
to generate a local decision uk(zk) which are sent to the fusion
center over a noisy, bandlimited wireless channel. Let us denote
by r(u1(z1), u2(z2), · · · , un(zn)) the received signal at the fusion
center. The fusion center makes a final decision based on the deci-
sion rule u0(r). In general, the distributed detection and fusion prob-
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lem involves simultaneous optimization for both local and global
(i.e. fusion) decision rules u1(z1), u2(z2), · · · , un(zn), u0(r). How-
ever, a class of important local processers are the amplify-and-relay
schemes in which each node amplifies and retransmits its observa-
tion to the fusion center such that

uk = gkzk for k = 1, · · ·n
where gk > 0 is the analog relay amplifier gain at the k-th node that
depends on the total average power constraint P0 on the whole sen-
sor system. For simplicity, throughout this paper we assume gk = g

for all k. (The issue of (distributed) power allocation will be consid-
ered in a future work). With this assumption, the amplifier gain g is
given by g2 = P0

n

(
σ2

v+
σ2

x
2

) . Note that, the available power per node

linearly decreases as more nodes are introduced into the system. We
define the observation quality and channel quality signal-to-noise ra-

tios (SNR) as γ0 �
σ2

x

σ2
v

and γc �
P0
σ2

w
, respectively.

A sufficient statistic at the fusion center is given by the n-dimensional,
matched filter output that can be written as

r = gRz + w (2)

where w ∼ N (0, σ2
wR) is the receiver noise and R is the n ×

n, symmetric and normalized received signal correlation matrix in
which the (k, k′)-th element represents the correlation between the
signalling waveforms of nodes k and k′.

Using spectral decomposition of R it can be shown (we omit the
details due to space limitations) that the optimal fusion rule is given
by

δopt(r) =

⎧⎨
⎩

1 ≥
if T (r) τ ′

0 <
, (3)

where τ ′ = 2 log τ +
∑n

k=1 log
(

g2(σ2
x+σ2

v)λk+σ2
w

g2σ2
vλk+σ2

w

)
, the decision

variable T (.) is the quadratic form T (r) =
∑n

k=1 |yk|2, λk’s are the
eigenvalues of matric R, and Y1, · · · , Yn are a set of independent,
zero-mean, Gaussian random variables. The variance σ2

j,k of the k-
th sample Yk under Hj can shown to be

σ
2
j,k =

⎧⎨
⎩

g2σ2
xλk

g2(σ2
x+σ2

v)λk+σ2
w

if j = 0

g2σ2
xλk

g2σ2
vλk+σ2

w
if j = 1

. (4)

In this paper we consider Bayesian optimal fusion detectors. Thus
our basic performance criteria is the probability of fusion error de-
noted as Pe. While only in very special circumstances one can eval-
uate the exact probability of error Pe of (3), even in those cases
it may be in terms of special functions that might require numeri-
cal computations [5]. As a result, they may not give much insight
into the design of decentralized sensor systems. On the other hand,
while not exact, error exponents (and the bounds based on them)
can be very useful in characterizing the performance of a detection
procedure in most situations. The most commonly used bound for
Bayesian detection is the Chernoff bound given by (with equal pri-
ors) Pe ≤ 1

2
eµC where Chernoff error exponent is defined as

µC = min
s∈[0,1]

log E {Ls(r)|H0} . (5)

Although somewhat loose than the Chernoff bound a much easier
to evaluate is the so-called Bhattacharya upper bound Pe ≤ 1

2
eµB

where Bhattacharya error exponent µB is defined as [6]

µB = log E

{
L 1

2 (r)|H0

}
. (6)

3. FUSION PERFORMANCE AND OPTIMAL SENSOR
SYSTEM DESIGN

3.1. Orthogonal Signalling

In this case we have that R = I such that the fusion error probability
can be determined exactly as was given in [5]. The resulting expres-
sion is, however, difficult to optimize over the sensor system size to
obtain a useful design rule. As a solution, in this paper we resort to
the error exponents. In particular, we have the following:

Proposition 1 The Chernoff and Bhattacharya error exponents with
orthogonal signalling, µ0

C and µ0
B respectively, corresponding to the

Bayesian fusion performance are given by

µ
0
C =

n

2

[
log

1 + σ2
1

1 + (1 − s0)σ2
1

− s0 log
(
1 + σ

2
1

)]
, (7)

and

µ
0
B =

n

2

[
1

2
log

(
1 + σ

2
1

) − log

(
1 +

σ2
1

2

)]
, (8)

where σ2
1 = γ0

1+ 1
γ̄c

, s0 = 1 + 1
σ2
1
− 1

log(1+σ2
1)

in (7) and we have

defined γ̄c = γc

n(1+ γ0
2 )

.

It can be shown that in most cases the upper bound to the per-
formance in terms of the Bhattacharya error exponent is close to that
with the Chernoff exponent. Due to its particularly simple struc-
ture, thus we propose to optimize the sensor systems based on the
Bhattacharya error exponent. Note that, numerical examples show
that for the range of SNR’s that we consider the optimal n = n0

with Bhattacharya error exponent exactly matches that for the ex-
act fusion performance. This is due to the fact that even when the
bound is some what loose the behavior of the exact performance
and the Bhattachraya bound are almost the same. In particular, we
can show that limn−→∞ µB = 0. This indicates that the Bhat-
tacharya upper bound to the error probability agrees with the con-
clusion limn−→∞ Pe = 0.5 shown in [5]. Following proposition
summarizes the solution to the sensor system optimization problem
in the case of orthogonal signalling under a global power constraint.

Proposition 2 The optimal number of nodes n0 that results in the
tightest Bhattacharya upper bound to the fusion error probability in
a distributed sensor system subjected to a global power constraint
P0 is given by,

n0 =
γc(

1
2

+ 1
γ0

) (
1

2x0
− 1

γ0

)
(9)

where x = x0 is the unique positive solution to the equation fγ0(x) =
0 with

fγ0(x) = log

√
1 + 2x

1 + x
+

(
1 − 2x

γ0

)
x2

(1 + x)(1 + 2x)
.

The optimal number of sensors for a given total power constraint
can be approximated as follows:

n0 ≈
{

γc

x̃0
if γ0 � 1

γc if γ0 � 1
, (10)

where x̃0 ≈ 1.535 is the unique zero of the function f̃(x) = log
√

1+2x

1+x
+

x2

(1+x)(1+2x)
.
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Fig. 1. Sensor system optimization under a total power constraint.
γc = 20 dB.

Proof 1 Omitted (can be found in [7]).
The function fγ0 is shown on Fig. 1a as a parameterized plot. It

is a well-behaved, smooth function with a unique zero. Moreover, as
can be seen from Fig. 1b, for both very small and very large values
of γ0 the zero of fγ0 converges to fixed limits. In Fig. 2 we have
shown the optimal number of sensor nodes for distributed detection
of a stochastic signal under a total power constraint obtained via
the exact solution to the zero of fγ0 . Figure 2 shows that indeed
the asymptotic solutions given in (10) provide a good approximation
except for a small range of values for the observation SNR γ0.
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Fig. 2. Optimal sensor system size as a function of observation SNR
for a given global power constraint with orthogonal sensor-to-fusion
center communication.

3.2. Non-orthogonal Signalling

The validity of orthogonal signalling model may not be justified in
a practical system due to various reasons, in particular when the
system is subjected to a total bandwidth constraint. A commonly
used non-orthogonal signalling model is the equi-correlation model
in which correlation between any two different signalling waveforms
is assumed to be the same, so that [R]k,k = 1 and [R]k,k′ = ρ for
k �= k′ where |ρ| < 1 is the common correlation between any pair
of received signalling waveforms (in the following we will assume
that 0 < ρ < 1. The analysis for negative ρ follows easily). The
eigenvalues of R can easily be shown to be λ1 = λ2 = · · · =

λn−1 = 1 − ρ � λa and λn = 1 + (n − 1)ρ � λb. Note that,
this single different eigenvalue makes the closed form analysis of
the error probability significantly difficult and requires integration
of a pdf involving the confluent hypergeometric function [5]. Let
us denote σ2

1,k = σ2
1,a = γ0

1+ n
(1−ρ)γ̃

, for k = 1, · · · , n − 1, and

σ2
1,n = σ2

1,b = γ0

1+ 1

( 1−ρ
n

+ρ)γ̃

under the hypothesis H1, correspond-

ing to the eigenvalues λa and λb. The Chernoff and Bhattacharya
error exponents in this case is stated in the Proposition 3 at the top
of next page.
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Fig. 3. Optimal sensor system size as a function of signalling cor-
relations for a given global power constraint with non-orthogonal
sensor-to-fusion center communication.

A plot of the (tightest) Chernoff and Bhattacharya error expo-
nents shows that, as with individual node power constraints, the per-
formance degrades as ρ increases. Moreover, it can be shown that
there is an optimal number of sensor nodes that results in the lowest
upper bound for each ρ. As before, we base our sensor system op-
timization on the Bharracharya error exponent. However, unlike in
the case of orthogonal sensor-to-fusion center communication, a di-
rect optimization of µB as a function of n does not, in general, yield
a closed-form expression.

In Fig. 3 we have shown the numerically obtained optimal n =
n0 as a function of ρ for different γ0 and γc values. As can be ob-
served from Fig. 3, for a fixed γ0 and γc, the optimal n0 decreases as
a function of ρ. In fact, an asymptotic expansion shows that optimal
n0 can be approximated as follows:

n0 ≈
{

(1−ρ)γc

x̃0
if γ0 � 1

(1 − ρ)γc if γ0 � 1
. (13)

where x̃0 is the unique zero of the function f̃(.) defined in Proposi-
tion 2. In Fig. 3 we have also included the above approximations to
optimal n0. Note that, for a fixed γc as ρ increases, the approxima-
tions in (13) worsen. It is interesting to note from (13) that (1−ρ)γc

essentially acts as the effective channel SNR. This shows that the
effect of non-orthogonal signalling always degrades the final fusion
performance. The larger the signalling waveform correlation ρ the
more the performance will degrade as one would expect intuitively.
Note that, in general, this is not the case in fusion of a deterministic
signal with analog local processing as was shown in [8]. With a de-
terministic signal, at least when the system is perfectly synchronized
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Proposition 3 The Chernoff error exponent for Bayesian fusion performance in distributed stochastic Gaussian signal detection with equi-
correlated sensor-to-fusion center signalling is

µC =
n − 1

2

[
(1 − s0) log

(
1 + σ

2
1,a

) − log
(
1 + (1 − s0)σ

2
1,a

)]
+

1

2

[
(1 − s0) log

(
1 + σ

2
1,b

) − log
(
1 + (1 − s0)σ

2
1,b

)]
,

where

s0 =

⎧⎪⎪⎨
⎪⎪⎩

1
2

[
s̄0

(
1 +

√
1 + K1

) − (
1 + 1

σ2
1,b

) (√
1 + K1 − 1

)]
if s̄0 ≤ 1 + 1

σ2
1,b

1
2

[
s̄0

(
1 −√

1 + K1

)
+

(
1 + 1

σ2
1,b

) (√
1 + K1 + 1

)]
otherwise

, (11)

with K1 = 4K2

K3

(
1+ 1

σ2
1,b

−s̄0

)2 , K2 = 1
σ2
1,a

− 1
σ2
1,b

, K3 = (n−1) log
(
1 + σ2

1,a

)
+log

(
1 + σ2

1,b

)
and s̄0 = 1+ 1

σ2
1,a

− n
K3

. The corresponding

Bhattacharya error exponent can be written as

µB =
n − 1

2

[
1

2
log

(
1 + σ

2
1,a

) − log

(
1 +

σ2
1,a

2

)]
+

1

2

[
1

2
log

(
1 + σ

2
1,b

) − log

(
1 +

σ2
1,b

2

)]
. (12)

the non-zero ρ can in fact improve the fusion performance due to the
beam-forming effect.

4. CONCLUSIONS

In this paper, we considered sensor system optimization problem for
a distributed detection and fusion system under global power and
bandwidth constraints. Assuming analog relay amplifier local pro-
cessing we derived the error exponents to the fusion performance
and proposed a method based on the Bhattacharya error exponent to
obtain the optimal sensor system size. We have also shown simple
approximations to the exact solutions that are valid for either the low
or high observation SNR regimes and provide useful insight.
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