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ABSTRACT

This paper addresses optimal sensor scheduling for maximiz-
ing network lifetime. We formulate this problem as a stochas-
tic shortest-path multi-armed bandit problem. The optimal
transmission scheduling policy is thus to choose the sensor
with the largest Gittins index. Exploiting the underlying struc-
ture of the sensor scheduling problem, we derive a closed-
form expression for the Gittins index. We show that choosing
the sensor with the most residual energy is an optimal strat-
egy when the channel fading is independently and identically
distributed across sensors.

1. INTRODUCTION

A wireless sensor network (WSN) consists of a large number
of low-cost, low-power, energy-constrained sensors. Sensors
monitor a certain phenomenon and transmit their measure-
ments to the access point (AP). One of the key problems aris-
ing in WSNs is sensor scheduling: which sensors should be
scheduled for transmission to achieve an optimal performance
specified by the underlying network applications (see [1–3]
and references therein). In [4], a decentralized suboptimal
sensor scheduling protocol is proposed for lifetime maximiza-
tion. Exploiting the local channel state information (CSI) of
each sensor, this protocol requires every sensor to estimate its
channel realization in each data collection. Recently, an opti-
mal transmission scheduling is obtained via stochastic short-
est path (SSP) formulation in [5]. This optimal protocol re-
quires centralized implementation in which sensors have to
send pilot signals to the AP for global CSI acquisition. The
basic idea of these two protocols is to exploit channel di-
versity among sensors. In practice, however, the transmis-
sion power of sensors may be limited to a small range due
to hardware implications. This may exclude the possibility
of fully exploiting channel diversity. As a consequence, the
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extra energy consumed in channel acquisition and centralized
scheduling may override the benefit of using CSI.

We are thus motivated to exploit the channel statistics
rather than realizations in sensor scheduling1. We formulate
the resulting problem as an SSP multi-armed bandit problem
which is special class of Markov decision process with a non-
discounted reward and a finite but random stopping time. The
optimal transmission scheduling for network lifetime maxi-
mization is thus given by an indexable policy that chooses the
sensor with the largest Gittins index. Although a closed-form
expression for the Gittins index does not exist for a general
multi-armed bandit problem, we derive a closed-form expres-
sion for the Gittins index by exploiting the rich structure of the
transmission scheduling problem. We also show that choos-
ing the sensor with the most residual energy is optimal when
the channel is independently and identically distributed (i.i.d.)
across sensors. In this case, the optimal scheduling policy
does not even require the knowledge of channel statistics.

2. NETWORK MODEL AND LIFETIME
DEFINITION

We consider a WSN with N sensors, each powered by a non-
rechargeable battery with initial energy E0. In each data col-
lection, one of these N sensors is selected to transmit its
measurement encoded in a packet with fixed size to the AP
through a wireless fading channel. The channels between the
AP and sensors follow the block fading model with the block
length equal to the transmission time of one packet. We also
assume that the channel fading is i.i.d. across data collections
and independently distributed across sensors.

In each data collection, the minimum energy E(cn) re-
quired for sensor n to transmit a packet successfully to the AP
is a random variable depending on its current channel state cn:

E(cn) = Ec +
E

cn

(1)

where Ec is the energy consumed in transmitter circuitry and

1Note that although channel realizations are not used in scheduling, local
CSI of the scheduled sensor is used to adapt its transmission power.
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E is the energy required to achieve an acceptable received
SNR at the AP when the channel gain is one. In practice, sen-
sors can only transmit at a finite number L of power levels due
to their hardware limitations. To conserve energy, every sen-
sor chooses, according to its channel gain, the lowest power
level that meets the SNR threshold for successful reception
at the AP. Hence, the energy wn consumed by sensor n in
transmitting its packet is a random variable depending on its
current channel state cn:

wn =

{
min

k
{εk : εk ≥ E(cn)} , if cn ≥ E

εL−Ec
,

∞, otherwise,
(2)

where εk is the energy consumed in transmitting a packet at
power level k and 0 < ε1 < . . . < εL < ∞. Note that if
the channel experiences deep fading (cn < E

εL−Ec

), sensor n

will fail to transmit in this data collection since its energy re-
quirement exceeds the maximum sensor energy consumption:
E(cn) > εL. For simplicity, we write wn = ∞ in this case.

The distribution of the energy consumption requirement
wn of sensor n is thus determined by its channel distribution:

Pr{wn = ε1} = Pr

j
cn ≥

E

ε1 − Ec

ff
,

Pr{wn = εk}

= Pr

j
E

εk − Ec

≤ cn <
E

εk−1 − Ec

ff
, 2 ≤ k ≤ L,

Pr{wn = ∞} = Pr

j
cn <

E

εL − Ec

ff
. (3)

Since the sensor energy consumption is restricted to the set
{εk}

L
k=1, the residual energy en of sensor n at the beginning

of a data collection belongs to the set E :

E =

{
e : e = E0 −

N∑
k=1

αkεk ≥ 0 for αk ≥ 0 and αk ∈ Z

}
.

We define the network lifetime L as the number of data
collections until any sensor dies or the first transmission fail-
ure2. In other words, the network is considered dead if any
sensor’s residual energy drops below the minimum energy
consumption (i.e., en < ε1 for any n) or the scheduled sensor
fails to transmit, whichever occurs first.

In this paper, we seek the answer to the following ques-
tion: given the residual energy profile e = (e1, . . . , eN) at
the beginning of each data collection and the channel distri-
butions, which sensor should be scheduled for transmission
so that the network lifetime is maximized.

3. SSP MULTI-ARMED BANDIT FORMULATION

An SSP multi-armed bandit process consists of N indepen-
dent Markov systems, each of which has an inevitable termi-

2Similar analysis can be carried out for a more general lifetime definition
where the network is considered dead when any sensor dies or the number of
transmission failures exceeds a threshold.

nating state. Based on the current states of all systems, we
select one system to work on and receive a non-discounted
reward. Only the state of the chosen system evolves accord-
ing to its transition probabilities; the states of other systems
remain fixed. The goal of an SSP multi-armed bandit is to
maximize the total expected reward until any system reaches
its terminating state.

To formulate the optimal transmission scheduling as an
SSP multi-armed bandit process, we model the sensor net-
work by N independent Markov systems, each of which rep-
resents the state evolution of a sensor in the network. In each
data collection, we characterize the state of a sensor by its
residual energy. Since the current channel realizations are un-
known, the scheduled sensor may not have enough energy for
transmission. In this case, a failure in data collection occurs
and the network lifetime terminates. We introduce state t to
represent this situation and define the state space S of each
Markov system as

S
∆
= {state i = e : e ∈ E} ∪ {state t}. (4)

The terminating state space St ⊂ S is defined as

St
∆
= {e : e < ε1} ∪ {state t}, (5)

where states in the set {e : e < ε1} indicate the death of the
sensor and state t indicates a failure in data collection. By
the lifetime definition, the network is considered dead if any
sensor reaches a terminating state in St.

Next, we define the action space, the reward, and the tran-
sition probabilities for the Markov system representing sensor

n. The action space consists of two elements: A
∆
={0, 1}. Ac-

tion a = 0 indicates that sensor n is not chosen; the state of
sensor n does not change. Action a = 1 indicates that sensor
n is scheduled for transmission; the state of sensor n transits
from i to j with probability p

(n)
ij and a reward r

(n)
ij is earned.

The transition probability p
(n)
ij depends on the channel distri-

bution of sensor n, which can be obtained as

p
(n)
ij =

{
Pr{wn = εk}I[e′

n
=en−εk], j = e′n,

Pr{wn > en}, j = t,
(6)

where state i = en and I[x] is the indicator function: I[x] = 1

if x is true and I[x] = 0 otherwise. The reward r
(n)
ij obtained

when the state of sensor n transits from i to j is defined as

r
(n)
ij = I[j �=t]. (7)

Hence, the reward indicates whether the transmission of the
chosen sensor is successful. Since only one sensor is sched-
uled in each data collection, the total reward obtained until the
network dies (i.e., any sensor reaches one of its terminating
states) represents the total number of successful data collec-
tions, which is the network lifetime. Our goal is to find the
optimal policy that specifies which sensor to choose in each
data collection for network lifetime maximization.
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4. OPTIMAL TRANSMISSION SCHEDULING

In the last section, we have formulated the optimal transmis-
sion scheduling as an SSP multi-armed bandit process. It is
shown in [6] that the optimal policy is given by an indexable
strategy that chooses the sensor whose current state has the
largest Gittins index in each data collection. In this section,
we address the implementation of this optimal policy and de-
rive a closed-form expression for the Gittins index. We also
calculate the optimal expected network lifetime.

4.1. Gittins index

For completeness, we first give a brief description of the Git-
tins index. We consider the single sensor case and modify
the Markov system associated with sensor n in the following
way [6]: under action a = 0, sensor n transits to terminat-
ing state t with probability 1 and a terminating reward g is
received. Our goal here is to maximize the total expected re-
ward before sensor n reaches any terminating state in (5).

Applying the Bellman’s equation, the optimal expected
reward V (i) of the modified system starting from state i is
given by

V (i) = max

⎧⎨
⎩g, Rn(i) +

∑
j∈S

p
(n)
ij V (j)

⎫⎬
⎭ , (8)

where Rn(i) is the expected reward in state i associated with
sensor n under action a = 1:

Rn(i) =
∑
j∈S

r
(n)
ij p

(n)
ij = Pr{wn ≤ en}. (9)

Note that the optimal reward V (i) = 0 for all i ∈ St. The
Gittins index γn(i) of state i is defined as the smallest value
of terminating reward g at which action a = 0 is optimal:

γn(i) = min
g

{g : V (i) = g} . (10)

4.2. Optimal Policy

Since the Gittins index associated with each sensor only de-
pends on its own state and is independent of other sensors’
states, the optimal transmission scheduling policy can be im-
plemented in a distributed fashion via opportunistic carrier
sensing [4]. Specifically, in each data collection, every sen-
sor chooses a backoff time inversely proportional to its Gittins
index and transmits with its chosen backoff delay if the chan-
nel is available before its backoff time expires. Since a sen-
sor with larger Gittins index has a shorter backoff time, this
opportunistic carrier sensing scheme ensures that the sensor
with the largest Gittins index seizes the channel and transmits
if the channel propagation delay is negligible.

The Gittins index is the key to the optimal transmission
scheduling. For a general N -armed bandit problem, a closed-
form expression for the Gittins index does not exist, and the

complexity of the most efficient algorithm to calculate the
Gittins index is cubic in the number of non-terminating states
[7]: O(M3) where M = |S\St|. Exploiting the rich struc-
ture of sensor scheduling problem, we derive a closed-form
expression for the Gittins index and hence reduce its compu-
tational complexity to linear O(M).

Theorem 1: For sensor scheduling problem, the Gittins
index γn(i) of state i associated with sensor n is given by

γn(i) = γn(en) =
Pr{wn ≤ en}

Pr{wn > en − ε1}
, (11)

where the distribution of wn is determined by the channel dis-
tribution in (3).

Proof: See Appendix A for details ���

Corollary 1: When channel fading is i.i.d. across sensors,
choosing the sensor with the most residual energy is optimal
in maximizing network lifetime.

Proof: Since the channel distribution is identical across
sensors and the Gittins index γn(en) given in (11) increases
with the residual energy en, Corollary 1 follows. ���

Corollary 1 shows that when the channel fading is i.i.d.
across sensors, the optimal transmission scheduling can be
implemented even when the channel distribution is unknown.

4.3. Optimal Lifetime

Applying the Bellman’s equation, we obtain the optimal life-
time V ∗(e) starting from the network residual energy profile
e = (e1, . . . , eN ) as

V ∗(e) = max
n

⎧⎨
⎩Rn(en) +

∑
e′

n
∈S

p
(n)
ene′

n

V ∗(e′)

⎫⎬
⎭ , (12)

where e
′ = (e1, . . . , en−1, e

′
n, en+1, . . . , eN) denotes the en-

ergy profile to which e transits when sensor n is chosen and
Rn(en) is the expected reward in state en given in (9). Calcu-
lating (12) in an increasing order of the total energy

∑N

n=1 en

in the network, we can readily obtain the optimal lifetime in
one iteration. Furthermore, applying the Gittins strategy, we
can also simplify (12) as

V ∗(e) =

L∑
k=1

Pr{wa = εk}I[ea−εk≥0] [1 + V ∗(e′k)] (13)

where e
′
k = (e1, . . . , ea−1, ea − εk, ea+1, . . . , eN ) and a =

maxn{γn(en)} is the index of the sensor whose current state
en has the largest Gittins index.

5. NUMERICAL EXAMPLE AND CONCLUSION

Fig. 1 compares the expected network lifetime of the opti-
mal transmission scheduling policy, the scheme that chooses
the sensor with the most residual energy, and the scheme that
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randomly schedules a sensor. Exploiting channel distribution,
the optimal policy outperforms the random protocol without
increasing the implementation overhead since the Gittins in-
dex can be pre-calculated according to the channel distribu-
tion. The performance gain of the optimal policy over the ran-
dom protocol increases with the initial energy E0. When the
channel is i.i.d. across sensors (case 1), choosing the sensor
with the most residual energy has the optimal lifetime perfor-
mance, which confirms Corollary 1. Clearly, when the chan-
nel is not identically distributed (case 2), this strategy is no
longer optimal, but the performance degradation is small.

6. CONCLUSION

In this paper, we formulated the optimal sensor scheduling
as an SSP multi-armed bandit problem. The rich structure
of the scheduling problem enables us to derive a closed-form
expression for the Gittins index. We also showed that choos-
ing the sensor with the most residual energy is optimal when
channel is i.i.d. across sensors3.

7. APPENDIX: PROOF OF THEOREM 1

To derive the closed-form Gittins index (11), we consider the mod-
ified Markov system associated with sensor n that has been intro-
duced in Section 4.1. Let U be the set of states whose Gittins index
has been calculated. Initiate U = φ.

Step 1: Calculate the largest Gittins index in the set S\U . Sup-
pose state i∗ = e∗n has the largest Gittins index and the modified

3The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the U. S.
Government.

Markov system has a terminating reward g = γn(i∗). It has been
shown in [6] that the optimal policy for the modified Markov system
is to choose action a = 0 whenever the Gittins index of the current
state is smaller than the terminating reward g. Hence, the optimal ex-
pected reward starting from any non-terminating state j ∈ S\St\U
is V (j) = g = γn(i∗). From the definition of Gittins index, we
obtain the optimal total expected reward starting from state i∗ as

V (i∗) =γn(i∗) = Rn(i∗) +
X

j∈S\U

p
(n)
i∗jV (j)

=Rn(i∗) + Fn(i∗)γn(i∗)

(14)

where Fn(i∗) = Pr{e∗n − wn ≥ ε1} = Pr{wn ≤ e∗n − ε1} is the
probability that state i∗ does not transit to a terminating state in one
step. Hence, the largest Gittins index in S\U is given by

γn(i∗) =
Rn(i∗)

1 − Fn(i∗)
=

Pr{wn ≤ e∗n}

Pr{wn > e∗n − ε1}
. (15)

Step 2: Determine the state i∗ that has the largest Gittins index
and remove it from the Markov system. From (15), it can be readily
shown that state i∗ maximizes Rn(i)

1−Fn(i)
over all i ∈ S\U , i.e.,

i
∗ ∈ arg max

i∈S\U

Rn(i)

1 − Fn(i)
. (16)

If there are more than one states that achieve the largest Gittins index
(15), we will choose the one with the most residual energy. Since
Pr{wn ≤ x} is a non-decreasing function in x, state i∗ has the most
residual energy in S\U . Hence, state i∗ is not reachable from any
remaining state i ∈ S\U , i.e., p

(n)
ii∗ = 0. We can thus remove state

i∗ from the system without changing the remaining states.
Step 3: Let U = U ∪ {i∗}. Goto Step 1 until U = S\St.
Following the above procedure, we find that the Gittins index

can be computed using (15), which is the same as (11).
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