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ABSTRACT

In direct–sequence spread–spectrum (DS–SS) navigation based

systems, multipath can degrade seriously synchronization per-

formance causing time delay and code phase estimates, to de-

viate from the actual value. This bias depends on the relative

amplitudes and delays of multipath replicas with respect to

the direct signal. The error in the estimated position due to

multipath, when using a standard Delay Lock Loop, can be

on the order of several tens of meters, which is a critical as-

pect in high–precision applications. This works presents a

Sequential Monte Carlo based algorithm which tries to iter-

atively estimate complex amplitudes and delays of the direct

signal and multipath replicas by characterizing the posterior

probability density function of these parameters relying on

particle filter theory. Simulations are presented for navigation

systems, which are particular applications of DS-SS systems.

1. INTRODUCTION

Global Navigation Satellite Systems (GNSS) is the general

concept used to identify those systems that allow user posi-

tioning based on a constellation of satellites. Specific GNSS

systems are the well-known american GPS or the forthcom-

ing european Galileo. Both based on the same principle: the

user computes its position based on the distances between

its receiver and the set of in-view satellites. These distances

are calculated estimating the propagation time that transmit-

ted signals take from each satellite to the receiver. At least 4

satellites are needed in order to compute user position [1].

Each satellite is uniquely identified by its own DS–SS

signal, which are transmitted synchronously by all satellites.

GNSS receivers are only interested in estimating delays of

signals received directly from the satellites, hereafter referred

to as line-of-sight-signal (LOSS), since they are the ones that
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carry information of direct propagation time. Hence, reflec-

tions, distort the received signal in a way that may cause a

bias in delay and carrier–phase estimations. Thus, multipath

is probably the dominant source of error in high–precision

applications since it can introduce a bias up to a hundred

of meters when employing a 1-chip wide (standard) delay

locked loop (DLL) to track the delay, which is a common

synchronization method used in DS–SS receivers [2]. To the

aim of reducing this annoying effect, several methods have

been proposed such as the Narrow Correlator, the MEDLL,

the Pulse Aperture Correlator (PAC) or the Strobe Correlator,

which are studied and compared in [2]. Although they achieve

much better results than the conventional DLL in terms of

multipath-caused timing bias, they do not mitigate this ef-

fect completely. Specially troublesome is the case of coherent

multipath, replicas with relative delays shorter than the chip

period, where timing synchronization may fail.

In this paper, a coherent DLL is proposed to the aim of

reducing the effect of multipath on code timing estimation.

It takes into account statistical properties of both LOSS and

multipath delays to achieve a Bayesian solution, assuming a

model that is a function of amplitudes and delays, which are

the unknown parameters to estimate. The novelty relies on the

use of a Sequential Monte–Carlo (SMC) based algorithm [3]

to recursively obtain the posterior probability density func-
tion (pdf) of the parameters of interest given the data–set re-

ceived, in an iterative parameter estimation algorithm.

2. SIGNAL MODEL

If there areN satellites in view, each LOSS affected byMn− 1
multipath signals, the received complex baseband DS–SS sig-

nal in additive white gaussian noise can be modeled as

x(t) =
N∑

j=1

Mj−1∑
i=0

αjiqj(t − τji)e
jφji + w(t) (1)
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where αji, τji and φji are the amplitude, delay and carrier

phase of the i–th signal of the j–th satellite, respectively. No-
tice that the subscript i = 0 stands for the line–of–sight–
signal (LOSS). Due to physical reasons, it is considered that

|αji| < |αj0|

τji > τj0 ∀i = {1, . . . , M − 1} (2)

qj(t) is the DS–SS signal of the j–th satellite, formed with
the sequence of data symbols, {dj(l)}, and its pseudo–noise
code sequence {cj(n)} which spreads to a rate equal to the
chip period, Tc. Data symbols are transmitted at a lower bit

rate, Tb. g(t) is the chip-shaping pulse.

qj(t) =

∞∑
l=−∞

dj(l)pj(t − lTb) (3)

pj(t) =
P−1∑
n=0

cj(n)g(t − nTc) (4)

Correlating the input signal with a filter matched to the pj(t)
sequence, is commonly known as despreading. Hence, for
the received signal model in (1), the despreading process for

a given satellite results in

y(t) = α0R(t− τ0)e
jφ0 +

M−1∑
i=1

αiR(t− τi)e
jφi + n(t) (5)

beingR(t) the code autocorrelation function of the given satel-
lite and n(t) contains white gaussian noise and spread spec-
trum interferences of the other satellites. If phases are taken

into account in the estimation procedure, it is said to be the

decision–directed phase–directed case, and a coherent DLL

is used. On the other hand, if phases are neglected in the es-

timation, removed for example by a squaring stage, it is the

case of non–data–aided phase–independent criterion, using a

non-coherent DLL for code timing estimation.

IfK snapshots are assumed to be recorded, the despread-
ing model in (5) can be expressed in matrix form as,

y = aR(τ ) + n (6)

where a, τ ∈ R1×M are column vectors containing ampli-

tudes and delays of allM signals,R(τ ) ∈ R
M×K is the ma-

trix containing samples of the despreaded M signals which

only differences are their delays, denoted by τ . The compos-

ite signal and the zero–mean additive white gaussian noise

are expressed as y,n ∈ R1×K respectively, which covariance

matrix is denoted byCm.

3. BAYESIAN DLL FOR CODE TIMING
ESTIMATION

SMC methods adopt the state-space approach for modeling

system evolution over time. These methods deal with the
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Fig. 1. State–space as a Markov process of order one

non-linear filtering problem, this is to recursively compute

estimates of states xk ∈ Rnx×1 given measurements yk ∈
Cny×K at time index k. State equation models the evolution
of target states as a discrete–time stochastic model, in general

xk = fk−1(xk−1,vk−1) (7)

where fk−1 is a known, possibly non-linear, function of the

previous state xk−1 and vk−1 is the process noise which gath-

ers anymismodeling effect or disturbances in the state charac-

terization, with covariance matrixCsk
. The relation between

measurements and states is modeled by

yk = hk(xk,wk) (8)

where hk is a known possibly non-linear function and wk

is referred to as measurement noise, with covariance matrix

Cmk
. Both process andmeasurement noise are assumed white,

with known statistics and mutually independent. The initial a
priori pdf of the state vector is assumed known, p(x0).
Equations (7) and (8) show that the assumed state–space

model describes aMarkov process of order one, since states at

time instant k only depend on states on the previous instant,
k − 1, and on process noise. On the other hand, states are
hidden and the only information available are measurements

at every time step k, yk, which are also independent among

them. This idea is graphically shown in Fig. 1.

The problem consists on computing filtered estimates of

xk taking into account all available measurement up to time k,
Yk = {yi, i = 1, . . . , k}. From a Bayesian point of view, the
solution resides in recursively obtain the a posteriori pdf of
states at time k given all available measurements, p(xk|Yk).
Particle Filter methods use the Sequential Importance Sam-

pling (SIS) concept to characterize this density. Basically it

involves the approximation of the posterior by a set of Ns

random samples taken from an importance density function,
xi ∼ π(x), with associated importance weights wi. Where

the importance function has the same support as the true pos-

terior. The posterior approximation is,

p̂(xk|Yk) =

Ns∑
i=1

wi
kδ(xk − xi

k) (9)

being δ(·) the Dirac’s delta function. This approximation con-
verges almost surely to the true posterior as Ns → ∞ [4]
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On the sequel, we assume that the received signal is digi-

tized at a frequency rate of fs and correlated with the desired

satellite signature. Then, equation (6) models the measure-

ments, and the state-vector is composed by the 2M unknown

parameters: amplitudes and delays. Thus, xk =
[
τT ,aT

]T
,

where τ and a are the delays and amplitudes column vectors

respectively. Although no time evolution is assumed in static

parameter estimation, it is convenient to add some perturba-

tions to the state-parameter equation to avoid the known effect

of sample impoverishment,

xk = xk−1 + ξk (10)

where ξk is the process noise at time instant k with known
covariance matrixCsk

.

It is desirable to reduce state vector to a lower dimensional

space to accelerate convergence and reduce the minimumNs

needed. To this aim, we notice that, for a given delay τ i, we

can obtain the Least Squares estimation of amplitudes from

measurement equation (6) in a straightforward operation,

âi
LS = yR(τ i)H

(
R(τ i)R(τ i)H

)−1
(11)

which coincides with the Maximum Likelihood (âi
ML) solu-

tion under the assumption of zero-mean gaussian noise, which

holds. With this procedure, the dimension of the state-space

is reduced toM parameters.

3.1. Algorithm description

In a GNSS receiver, data from the correlation modules is not

sequentially processed but batch processed, following the Soft-

ware Defined Radio (SDR) philosophy. Hence, we can define

Nt in two ways: as the number of correlation outputs needed

by the Bayesian DLL to achieve a certain accuracy or as the

number of iterations performed for a given yk, in both cases

k = 1, . . . , Nt. The latter is the definition adopted hereafter.

Although equivalent to the other one in terms of algorithm

design, the underlying idea behind is quite different. Below

we describe the operation of the proposed Bayesian DLL:

1. Initialization. The degree of uncertainty after the ac-
quisition stage, previous to the DLL tracking, is±Tc/2
for the LOSS delay. Hence, the initial ambiguity of

the Bayesian DLL algorithm is equal to Tc for τ0, the

LOSS, and 2Tc for multipath delays (τ1, · · · , τM−1)

with respect to τ0, since it makes no sense to look for

replicas further, as they will not affect the estimation of

τ0. Thus, all Ns particles are initialized with the same

value taking into account the a priori state uncertainty,

given byCs0
. At time index k = 0,

{
τ̂ i
0

}Ns

i=1
= τ̂0 ∼ U (−Tc/2, Tc/2)

{
τ̂

i
mp

}Ns

i=1

= τ̂mp ∼ U (τ̂0, τ̂0 + 2Tc) (12)

where τ = [τ0, τ
T
mp]

T is the delay parameters vector.

π(τ
i mp

k)

τi
mp

k

τi
0

k

τMAP
mp

k−1

C
s

k−1

Normal pdf
Truncated Normal pdf

Fig. 2. Importance density function, π (τmpk
), for replica �.

Being σ2
mp�

= Cs(� + 1, � + 1) and � = 1, . . . , M − 1.

2. Importance Sampling. The SIS algorithm computes a
set of support points from the importance density func-

tion π(·). The choosing of π(·) is a critical issue in any
particle filter design. As seen in equation (11), states

defining amplitudes have been analytically solved given

a set of delays, τ . Hence, the importance density will

only be a function of delay vector, and we can write

π (τ ). A common solution is to adopt the prior density
as the importance, here we propose a Gaussian impor-

tance density function for LOSS delay particle genera-

tion with mean a previous estimation and variance the

one computed from the posterior p(xk−1|y)

τ i
0k

∼ π
(
τ̂0k−1

,Csk−1

)
= N

(
τ̂0k−1

,Csk−1
(1, 1)

)
(13)

On the other hand, taking into account relations in equa-

tion (2), a truncated Gaussian importance density func-

tion is proposed for multipath delays generation. This

is a normal multivariate density function with mean and

covariance obtained in time step k − 1 (as in the LOSS
case) but constraining the multipath delays, in the i–
th particle, to be always higher than its correspondent

LOSS delay particle, τ i
0k
, hence

τ i
mpk

∼ π
(
τ̂ mpk−1

,Csk−1

)
= (14)

= τ i
0k

+
∣∣(τ̂mpk−1

− τ i
0k

)
+ N

(
0,Csk−1

)∣∣
A representation of the importance density proposed

for multipath delay generation can be seen in figure 2.

3. Weight Update. Since the Importance density has been
chosen to fit the prior and the weights will not be prop-

agated, weights update is given by

w̃i
k = p(y|τ i

k,ai
k) (15)

where p(y|τ i
k,ai

k) is the likelihood function of mea-

surementsy given the set of support points
{
τ i

k,ai
k

}Ns

i=1
.

After normalization, weights and support points can be

used to characterize the posterior density,

wi
k =

w̃i
k∑Ns

j=1
w̃j

k

(16)
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Pseudo-code describing Bayesian DLL algorithm

for code timing estimation

[x̂, â]= Bayesian DLL(y,Cm,Cs0
, Ns, Nt)

• Initialize:
{

τ̂
i
k=0

}Ns

i=1

using eq. (12)

• FOR k=1:Nt

- FOR i=1:Ns

Generate τ i
k ∼ π(τ k|τ̂

i
k−1,Csk−1

)
Estimate ai

k according to (11) with τ i
k

Calculate w̃i
k = p(y|τ i

k,ai
k,Cm)

- END FOR

- Normalize wi
k = w̃i

k

(∑Ns

j=1
w̃j

k

)
−1

-
[
τ̂
MAP
k , âMAPk

]
= arg max pk(τ i

k,ai
k|y)

- Calculate Csk
using eq. (18)

- Initialize next iteration:
{
τ̂

i
k = τ̂

MAP
k

}Ns

i=1

• END FOR

• Final estimates: τ̂ = τ̂
MAP
Nt
, â = âMAPNt

4. Estimation. Now we consider theMaximum a Posteri-
ori (MAP) estimation of delays and amplitudes. Substi-
tuting generated particles

{
τ i

k,ai
k, wi

k

}Ns

i=1
into equa-

tion (9) yield an approximation of the posterior. Ap-

plying the MAP estimator:

x̂MAP
k =

[
τ̂
MAP
k , âMAPk

]
= arg max

τ k,ak

pk(τ i
k,ai

k|y)

(17)

In addition to this estimation, the covariances of state

error estimation must be calculated. A characterization

is obtained from the uncertainty region of the posterior,

Csk
≈

Ns∑
i=1

wi
k

(
xi

k − x̂MAP
k

) (
xi

k − x̂MAP
k

)H
(18)

where (·)H stands for the Hermitian operator.

5. Resampling. All particles are initialized to x̂MAP
k at

k + 1. This avoids the resampling step, which is shown
to be the bottle neck in particle filter parallelization.

4. SIMULATIONS

We have studied the BPSK modulation of C/A code in GPS

system. A scenario composed of a LOSS and a multipath

replica is considered (M = 2), assuming that the channel pa-
rameters are constant during the observation interval, which

is Nt ms, since the correlation outputs are taken every code

period. We choose a carrier-to-noise density ratio (C/N0) of

45 dB-Hz for the LOSS, a signal-to-multipath ratio (SMR) of

6 dB and the LOSS and multipath to be in–phase, the worst
possible case. Figure 3 shows the Root Mean Square Error

(RMSE) of time estimation for the LOSS with respect to the

relative delay of the multipath replica, with a chip rate nor-

malization. Several values of Ns are considered and the the-

oretical Cramér Rao Lower Bound is plotted.
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Fig. 3. RMSE of time delay of the LOSS. fs = 5.714MHz.

5. CONCLUSIONS

A new code–phase tracking algorithm has been presented un-

der the SMC framework, that allows the characterization of

the posteriori pdf of delays given a set of measurements. The

algorithm overcomes the problem of parameter estimation in

particle filters by properly choosing the importance density

function. Simulations have been done with BPSK modula-

tions used in navigation systems. The synchronization algo-

rithm proposed obtains accurate estimates of delays under se-

veremultipath conditions in few iterations and, although com-

putationally intensive, it allows high level of parallelization

since resampling step is avoided. Notice that, in the absence

of multipath (τmp = 0), the algorithm is operating properly.
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