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ABSTRACT

A new blind subspace-based channel and signature waveform esti-
mation technique is proposed for DS-CDMA communication sys-
tems operating in the presence of unknown wide-sense stationary
interference. Unlike the existing algorithms, our technique requires
single receive antenna and is applicable to the general case of ar-
bitrary transmitted symbol constellations. Necessary and sufficient
conditions for identifiability of the proposed technique are derived.
Closed-form expressions for the mean-squared error (MSE) of the
estimated channel are obtained and verified by means of simulations.

1. INTRODUCTION

Attaining the performance gains promised by multiuser detection
schemes depends critically on accurate knowledge of the signature
waveform of the user-of-interest at the receiver side [1]. The main
challenge is that due to the spread spectrum nature of the DS-CDMA
signals, the transmission channel may be subject to frequency selec-
tive fading [2], [3]. This may cause a signature waveform distortion,
and, consequently, an unknown mismatch between the presumed and
the actual received signature waveforms. Therefore, signature wave-
form estimation is an important prerequisite of any multiuser detec-
tion procedure.

Among numerous signature estimation techniques, blind
subspace-based methods [3]-[5] constitute a prominent trend. The
usual assumption made in the conventional subspace-based signature
estimation techniques is that the additive ambient noise is temporally
white, and, hence, the signal subspace can be obtained using eigen-
decomposition of the received data covariance matrix. However, this
assumption may be violated due to, for instance, the presence of
narrow-band interferers [4], [5]. It is well-known that in the latter
case, the signal subspace can not be identified from the subspace
spanned by the eigenvectors associated with the largest eigenvalues
of the received data covariance matrix, and, hence, some alternative
means to identify the signal subspace should be sought.

Assuming that the receiver is equipped with two well-separated
antennas such that the interference is spatially white between them,
Wang and Poor have proposed to identify the signal subspace from
the cross-correlation between the received data of these antennas
[4]. As deploying well-separated antennas in the current mobile
transceivers may be practically infeasible, a single-antenna blind
technique has been proposed in [5] to identify the signal subspace.
This technique is based on the assumptions that interference is a
circular Gaussian random process and the user transmitted symbols
are drawn from the binary phase-shift keying (BPSK) constellation.
Note that most of the leading standard proposals for the third gen-
eration (3G) of wireless communication systems recommend sym-

metric constellation such as quadrature phase-shift keying (QPSK).
Therefore, practical applications of the latter technique may be rather
limited.

In this paper, we propose an alternative approach to the prob-
lem of blind subspace-based signature waveform estimation in the
presence of unknown interference. Our technique can be applied
to a single-antenna receiver and to the general case of an arbitrary
transmitted symbol constellation. We only assume that the unknown
interference is wide-sense stationary. Note that this assumption has
been frequently used in various interference rejection schemes for
CDMA communication systems [5], [6] and includes several more
particular interference models such as multi-tone and autoregressive
(AR) interference models. Exploiting the idea presented in [7] in the
context of array processing, we obtain a subspace which is orthogo-
nal to the subspace spanned by the user signals. We then use the so-
obtained subspace along with the known spreading sequence of the
user-of-interest to identify the channel vector, and, subsequently, the
signature vector of this user. We also derive the necessary and suf-
ficient conditions which warrant the identifiability of the proposed
technique.

In the case when the data covariance matrix is estimated from a
finite number of data samples, the first-order perturbation theory [3]
is used to derive a closed-form analytical expression for the mean-
squared error (MSE) of the estimated channel vector. Using some
mild and physically justifiable assumptions, a simplified version of
this expression is also presented for the high signal-to-interference
(SIR) regime. From the latter expression, an impact of the key pa-
rameters (such as the number of data samples, the received power
of the user of interest, and the received interference power) on the
performance of the proposed algorithm is studied.

The rest of our paper is organized as follows. In Section 2, we
present the signal model. Our technique is presented in Section 3,
where the necessary and sufficient identifiability conditions are also
derived. The finite-sample performance of the proposed algorithm
is analyzed in Section 4. Section 5 contains computer simulation
results. Conclusions are drawn in Section 6.

2. SIGNAL MODEL

Consider a K-user synchronous DS-CDMA system1 operating in the
presence of an external interference. The received continuous-time
baseband signal can be modeled as [3]

x(t) =

∞X
m=−∞

KX
k=1

Akbk(m)wk(t − mTs) + i(t) (1)

1The synchronous case is mainly considered for the sake of notational
brevity. Extending our analysis to the asynchronous systems is direct [4].
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where Ts is the symbol period, Ak, bk(m), and wk(t) denote the
received amplitude, the mth zero-mean i.i.d. data symbol with vari-
ance σ2

s , and the signature waveform of the kth user, respectively,
and i(t) is the zero-mean, wide-sense stationary interference with
an unknown arbitrary correlation function which also includes the
white Gaussian ambient noise.

Let Lc be the spreading factor and ck=
ˆ
ck[1],ck [2],. . . ,ck[Lc]

˜T

denote the spreading sequence associated with the kth user where
(·)T stands for the transpose. Assuming that the spreading code is
short (i.e., the chip sequence period is the same as the symbol pe-
riod) and the user channel impulse responses are qiasi-static (i.e.,
fixed during the observation period), the signature waveform of this
user is given by [3]

wk(t) =

LcX
l=1

ck[l]hk

`
t − lTc

´
(2)

where hk(t) is the channel impulse response of the kth user, and
Tc = Ts/Lc is the chip period.

Let hk(t) has a finite support of [0, αTc], where L−1 ≤ α < L
and L is a positive integer. Let us also assume that L � Lc, so
that the effect of inter-symbol-interference (ISI) can be neglected
[3]. Sampling (1) in the interval corresponding to the nth transmitted
symbol of each user and neglecting the first L− 1 ISI-contaminated
samples, the ISI-free received sampled data vector can be written as
[3]

x(n) =

KX
k=1

Akbk(n)wk + i(n) (3)

where x(n) = [x(nTs + LTc), x(nTs + (L + 1)Tc), . . . , x(nTs +
LcTc)]

T , wk = [wk(LTc), wk((L + 1)Tc), · · · , wk(LcTc)]
T , and

i(n) = [i(nTs +LTc), i(nTs +(L+1)Tc), . . . , i(nTs +LcTc)]
T .

Using (2), the signature vector wk can be expressed as [3]

wk =

2
6664

ck[L] . . . ck[1]
ck[L + 1] . . . ck[2]

...
. . .

...
ck[Lc] . . . ck[Lc − L + 1]

3
7775 hk � Ckhk (4)

where hk = [hk(0), hk(Tc), . . . , hk((L − 1)Tc)]
T . According to

(4), if the spreading code of the user-of-interest is known at the re-
ceiver, then, provided that the channel vector hk is estimated, obtain-
ing the signature vector wk is straightforward [3]. Hence, through-
out this paper we consider the problem of channel vector estimation
rather than the signature vector estimation. For the sake of consis-
tency, we also assume without any loss of generality that hk is a unit
Euclidean norm vector (‖hk‖ = 1) [3], that is, the normalization
factor is absorbed in Ak. One can rewrite (3) in a more compact
form as [3]

x(n) = Wb(n) + i(n) (5)

where W = [A1w1, . . . , AKwK ] and b(n) = [b1(n), . . . , bK(n)]T .
From equation (5), it follows that

R � E{x(n)x(n)H} = σ2

sWW
H + Σ (6)

where Σ � E{i(n)i(n)H} and (·)H stands for the Hermitian trans-
pose. Since i(n) is wide-sense stationary, the entries of Σ depend
only on the difference between the observation times. Hence, Σ is a
Hermitian Toeplitz matrix, and, therefore, it is centro-Hermitian [7],
that is,

JΣ
∗
J = Σ (7)

where J is the permutation matrix with ones on the main anti-diago-
nal and zeros elsewhere, and (·)∗ denotes complex conjugate.

3. THE PROPOSED TECHNIQUE

Exploiting the idea presented in [7] for direction-of-arrival (DOA)
estimation, we use (7) to facilitate estimation of the user signature
waveforms without knowing the correlation matrix Σ. Let us form
the covariance difference matrix [7] as Rd � R− JR

∗
J. From (6)

and (7), it follows that Rd = σ2

sWW
H −σ2

sJW
∗
W

T
J. Note that

Rd depends on the user transmitted signals while it is independent
from the unknown interference covariance matrix Σ. We can rewrite
the latter matrix as [7]

Rd = σ2

s

ˆ
W JW

∗
˜ »

IK 0

0 −IK

– ˆ
W JW

∗
˜H

(8)

where IK is the K×K identity matrix. Since
ˆ

W JW
∗

˜
is an

(Lc −L + 1)× 2K matrix, we have that if Lc > 2K + L− 1, then
Rd is rank-deficient. Considering hereafter such a case, the matrix
Rd can be eigendecomposed as

Rd =
ˆ

Us Un

˜ »
Λs 0

0 0

– »
U

H
s

U
H
n

–
(9)

where Λs is the 2K ×2K diagonal matrix whose diagonal elements
are the non-zero eigenvalues of Rd, and Us is the (Lc−L+1)×2K
matrix whose columns are the eigenvectors associated with these
eigenvalues. It should be noted that if λ > 0 is an eigenvalue of
Rd, then −λ is also an eigenvalue of this matrix [7]. From (8)
and (9) it follows that range(Rd) = range

`ˆ
W JW

∗
˜́

=
range(Us). Since all columns of Un are orthogonal to all vectors
in range(Us), we have U

H
n

ˆ
W JW

∗
˜

= 0. Let us assume
without any loss of generality that the first user is the user of interest.
From the latter equation it follows that

U
H
n w1 = 0 (10)

U
H
n Jw

∗
1 = 0. (11)

It can be shown that there exists a unitary matrix Ω such that UnΩ =
JU

∗
n [8]. From the latter fact it readily follows that (10) and (11) are

equivalent, i.e., from either of them the other can be obtained [8].
Hence, either (10) or (11) can be exploited to identify the channel
vector h1. From (10) along with (4), it follows that UH

n C1h1 = 0,
and, therefore, h1 is a nontrivial solution to

Th = 0 (12)

where T = U
H
n C1. It is easy to verify that (12) is a linear system

with Lc − L + 1 − 2K equations and L unknowns. To have a
unique nontrivial solution for (12), it is necessary that the number of
equations is greater than or equal to the number of unknowns, that
is,

Lc + 1 ≥ 2K + 2L. (13)

Condition (13) restricts both the maximum admissible number of ac-
tive users and the channel length. However, if (13) does not hold, one
can resort to the temporal oversampling technique to facilitate iden-
tification of lengthier channels in more heavily loaded environments
[8].

Equation (13) represents only the necessary condition for uniq-
ueness of the solution of (12). The necessary and sufficient condi-
tions for unique identifiability of h1 can be obtained as follows. As
h1 is a nontrivial solution to (12), it follows that w1 = C1h1 lies
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in both range(C1) and null(Un) = range
`ˆ

W JW
∗

˜´
.

Therefore, w1 is in the intersection between the two latter subspaces
and can be uniquely identified from (12) if and only if

dim
˘
range(C1) ∩ range

`ˆ
W JW

∗
˜´¯

= 1 (14)

where dim{·} stands for the dimension of a subspace. If we further
assume that C1 is a full column-rank matrix, then w1 corresponds
to a unique channel vector h1. Hence, h1 can be uniquely identified
from (12) if and only if (14) holds true and C1 is full column-rank.

In practice, R is estimated using R̂ = 1

N

PN

n=1
x(n)xH(n)

and the proposed method can be formulated as follows.

1. Compute the eigendecomposition of R̂d � R̂ − JR̂
∗
J as

R̂d =
ˆ

Ûs Ûn

˜ »
Λ̂s 0

0 Λ̂n

– »
Û

H
s

Û
H
n

–
(15)

where the matrices Ûs, Ûn, and Λ̂s are the finite-sample
estimates of the matrices Us, Un, and Λs, respectively, and
Λ̂n is the diagonal matrix whose diagonal elements are the
Lc − L + 1 − 2K eigenvalues of R̂d with the least absolute
values.

2. Compute T̂ = Û
H
n C1 and find the least square (LS) estimate

of the channel h1 as

ĥ1 = M{T̂H
T̂} (16)

where M{·} stands for the normalized eigenvector associ-
ated with the smallest (minor) eigenvalue.

4. PERFORMANCE ANALYSIS

In this section, we use the first-order perturbation analysis to de-
rive an approximate expression for the MSE of the channel vector
estimate ĥ1. A simplified version of this expression will also be
derived for the high SIR regime. For the sake of simplicity, we as-
sume that i(n) has a circular Gaussian distribution. Note that the
circular Gaussian interference has been frequently considered in the
literature on interference rejection for CDMA systems [5]. The ap-
proximate expressions for the MSE of the channel estimate can be
derived as follows.

Theorem: Assume that i(n) is a circular Gaussian random vec-
tor and h1 is estimated using (16). Then, the MSE of the estimation
error δh1 = ĥ1 − h1 is approximately given by [8]

E
˘
‖δh1‖

2
¯

≈
tr (ΣΨ)

N
w

H
1 R

†
d

“
R + JR

T
J

”
R

†
dw1

−
2

N
w

H
1 R

†
dJ(ΣΨΣ)T

JR
†
dw1 (17)

where R
†
d is the pseudo-inverse of Rd and Ψ = UnT

†H
T

†
U

H
n .

Moreover, if the following three conditions hold

w
H
i wj = δij‖wi‖

2 (18)

w
H
i Jw

∗
j = 0 (19)

λmax(Σ) �
1

2
σ2

sA2

1‖w1‖
2 (20)

then (17) is simplified to

E
˘
‖δh1‖

2
¯
≈

tr (ΣΨ)

Nσ2
sA2

1

(21)

where λmax(·) stands for the maximum eigenvalue of a matrix, and
δij is the Kronecker delta.

Note that although (18) and (19) do not perfectly hold, they ap-
pear to be reasonable practical approximations. In practice, CDMA
spreading codes are deliberately designed so that even after passing
through a frequency selective channel, the resulting spread-spectrum
signature waveforms occupy a wide frequency band and behave as
almost white pseudo-random signals (see, e.g., [9]). Hence, in most
practical scenarios (18) and (19) should hold approximately because
the signature vectors are the sampled versions of almost white pseudo-
random signature waveforms. The accuracy of these approximations
will be validated in the simulation section.

It should also be noted that the received power of the user of
interest is equal to σ2

sA2

1‖w1‖
2, while the interference power is

lower bounded by the left-hand side of (20) because E
˘
‖i(n)‖2

¯
=

tr
`
Σ

´
≥ λmax

`
Σ

´
. Hence, if SIR is reasonably high, it is guar-

anteed that (20) holds. Based on this observation, one can consider
(21) as a simple approximation of (17) in the high SIR regime that
explicitly clarifies the MSE of the estimated channel vector in terms
of the number of data samples, variance of the transmitted symbols,
the received amplitude of the user of interest, and tr(ΣΨ). Note that
the latter quantity can be viewed as a weighted interference power
where the weighting factor Ψ depends on the matrix C1 and the
principal angles between range(C1) and range(Un) [3].

Assuming that tr(Σ) = Po (i.e., the interference power is equal
to Po), and h1 is the unique nontrivial solution to (12), one can also
obtain an upper-bound for the MSE in (21) as follows. As (12) has a
unique nontrivial solution, it directly follows that rank(T) = L−1.
Let us denote the positive singular values of T as ξ1 ≥ ξ2 ≥ . . . ≥
ξL−1 > 0. Note that the positive eigenvalues of Ψ and those of
T

†H
T

† are equal to ξ−2

L−1
≥ ξ−2

L−2
≥ · · · ≥ ξ−2

1
. Since Σ and Ψ

are positive (semi-)definite matrices, we have

tr (ΣΨ)

Nσ2
sA2

1

≤
tr

`
Σ

´
λmax(Ψ)

Nσ2
sA2

1

=
Po

Nσ2
sA2

1
ξ2

L−1

. (22)

It should be noted that if the largest eigenvalue of Ψ is unique, i.e.,
ξ−2

L−1
> ξ−2

L−2
, then (22) holds with equality if and only if Σ =

Poss
H where s is the eigenvector of Ψ associated with ξ−2

L−1
. It

follows from (22) that the MSE of the estimated channel vector can
become very large if ξL−1 goes to zero. This is an expected result
since if ξL−1 = 0, then rank(T) = L− 2, and, therefore, (12) has
a nontrivial solution other than h1.

5. SIMULATIONS

Computer simulations have been conducted to evaluate the perfor-
mance of the proposed algorithm and validate the obtained theoret-
ical results. In the numerical examples, Lc = 40 and the spreading
sequence associated with each user has been randomly drawn from
the binary set of {−1, +1} and then fixed throughout all examples.
Similarly, the entries of the channel vectors of the length L = 4 have
been randomly and independently drawn from a zero-mean complex
Gaussian process and then have been normalized so that ‖hk‖ = 1
(k = 1, . . . , K) and fixed throughout all examples. The transmit-
ted symbols have been drawn from the QPSK constellation with the
variance σ2

s = 1. Interference vector i(n) is considered as a circular
Gaussian random vector such that the (l, k)-th entry of the corre-
lation matrix Σ is [Σ]lk = 0.98|l−k|. Throughout the simulations
K = 5 is selected and we assume that all users have identical pow-
ers. Each point of the simulation curves is the result of averaging
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Fig. 1. MSEs of the estimated channel versus the number of data
samples N for the first interference model.

over 1000 Monte-Carlo realizations of interference and the transmit-
ted data sequences.

Fig. 1 shows the experimental MSE of the proposed algorithm
as well as the theoretical MSEs (17) and (21) versus N for SIR = 0
dB. For the sake of comparison, the MSE curve of the conventional
(i.e., white noise assumption-based) Liu and Xu (LX) algorithm [3]
is also drawn. It can be observed from Fig. 1 that the analytical
MSE curves obtained from (17) and (21) follow the experimental
MSE curve with quite a good accuracy. As predicted in Section 4,
these curves converge to zero with the rate 1/N . From Fig. 1, it
also follows that the MSE of the estimated channel using the LX
algorithm is constantly high and does not converge to zero. Note
that the LX algorithm is based on the mismatched assumption that
the signal subspace is spanned by the eigenvectors associated with
the K largest eigenvalues of R.

Fig. 2 shows the experimental and analytical MSEs versus SIR
for N = 100. A substantial performance improvement can be ob-
served from this figure with respect to the LX algorithm. Note that
the effect of interference is negligible in high SIRs where, as Fig. 2
demonstrates, the conventional LX algorithm can also be used to ob-
tain a reliable channel vector estimate. Note also that the MSE ex-
pressions (17) and (21) are derived using the first-order perturbation
theory, and, hence, they cannot accurately predict the MSE values
at very low SIRs, where the MSE of the channel vector estimate is
quite large.

6. CONCLUSIONS

In this paper, we have proposed a new subspace-based blind channel
and signature waveform estimation technique for DS-CDMA com-
munication systems operating in the presence of unknown wide-
sense stationary interference. Using the centro-Hermitian property
of the interference covariance matrix along with the idea of covari-
ance differencing [7], we derive a new algorithm for blind identifica-
tion of user signatures. In contrast to the existing algorithms [4], [5],
the proposed technique can be implemented using a single receiving
antenna and is applicable to arbitrary constellations of transmitted
symbols. Necessary and sufficient conditions for identifiability of
the proposed technique have also been derived. Using the first-order
perturbation theory, closed-form expressions for the mean-squared
error of the estimated channel vector have been obtained and the
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Fig. 2. MSEs of the estimated channel versus SIR for the first inter-
ference model.

effects of different parameters on the performance of the proposed
algorithm have been studied.
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