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ABSTRACT

OFDM systems traditionally perform channel coefficients estima-
tion relying on known training sequences. However in wireless
systems, performance and mobility can be further enhanced by
operating semi-blind channel estimation refinement between re-
ference symbols. A channel tracking method based on a MAP
version of the Expectation-Maximization (EM) algorithm and on
a block representation of channel variations has been proposed.
It performs better than already existing recursive algorithms but
have a quadratic complexity. In this paper, we propose a simplified
MAP algorithm which has a linear complexity and we examine its
convergence properties. This simplification is an adaptation of the
One Step Late technique to the EM algorithm for MAP estima-
tion. The proposed algorithm is applicable to both single carrier
and OFDM systems. Simulations are presented in the context of
5 GHz WLANs, showing that this algorithm perform as well as
the MAP version of the EM algorithm in the mobile environment,
without any loss in performance in the static situation.

1. INTRODUCTION

Orthogonally Frequency Division Multiplexing (OFDM) has
already been accepted for Wireless Local Area Network (WLAN)
standards (IEEE 802.11a), European Telecommunications Stan-
dards Institute’s (ETSI) High Performance Local Area Network
Type 2 (HIPERLAN 2) and Japan’s Mobile Multimedia Access
Communication (MMAC) systems. In OFDM, the problem of the
intersymbol interference (ISI) is avoided by inserting a cyclic pre-
fix between consecutive transmitted blocks. The effects of the chan-
nel appear in the frequency domain as a simple scalar multiplica-
tion, each subcarrier being attenuated by the corresponding nar-
rowband subchannel coefficient. Efficient and accurate channel es-
timation for OFDM is necessary to coherently demodulate recei-
ved data. Channel parameters estimation has been successfully
used to improve the performance of OFDM systems, and plays
a crucial role in such systems. Classical methods for estimating
these coefficients are based on training sequences. A known se-
quence is transmitted for a limited period of time, during which a
channel estimate is obtained, and a complete description of the
transmission system is established. The resulting model is then
used for the detection of data symbols subsequently transmitted.
In order to cope with Doppler effect due to the mobility of wi-
reless systems, reference sequences must be repeated quite often,
and may result in a significant loss in the useful bit rate. An al-
ternative to this scheme is to estimate the channel based only on
noisy data exploiting statistical and other properties of the infor-
mation sequences and channel, this is the blind channel estima-

tion approach. A common way to design blind estimation algo-
rithms is to use the Expectation Maximization (EM) algorithm.
For likelihood functions with multiple maxima, the convergence
point depends of the initial starting point and may be a local maxi-
mum. Semi-blind estimation methods consist in tracking the chan-
nel variations by refining the channel coefficients blindly using
the training sequence as initializations for the estimator, hence lo-
cal convergence problems are avoided. EM-based blind or semi-
blind channel estimation methods have already been proposed in
the OFDM context [1]-[6], including time and frequency correla-
tions or not. Most proposed methods consider separately each co-
efficient, and one can obtain improvements by considering blocks
of data. In this work, we estimate channel coefficients and chan-
nel noise variance simultaneously contrary to precedent methods,
which estimate only channel coefficients. We work within the fra-
mework of slowly time-varying channels, for which the Doppler
speeds are rather small so that inter channel interference (ICI)
can be neglected. For such channels, the channel can be conside-
red constant during the transmission of an OFDM symbols block
which size depends of the mobility. Based on this idea, a maximum
a posteriori (MAP) algorithm which takes into account a chan-
nel correlation model between the channel coefficients of different
blocks has been proposed in [6]. This prior information permits to
improve channel estimation. EM-MAP has a quadratic arithmetic
complexity which limits its practical usefulness. In his paper, we
propose to reduce this computation complexity. Indeed, using the
One Step Late (OSL) algorithm presented in [7] permits to turn the
arithmetic complexity from quadratic to linear. The convergence of
this new algorithm in our context is established. We also prove that
the stationary points are also stationary points of the EM-MAP. As
a result, the modified EM-MAP algorithm has the same perfor-
mances than the EM-MAP with the additional advantage of linear
arithmetic complexity.

2. SYSTEM MODEL

We consider a conventional cyclic prefix OFDM transceiver
scheme depicted in figure 1, in which a baseband discrete time
model of the system is provided. In this model, some side entries
of the size P IFFT are zero and only Nc subcarriers among the
P available are effectively used for transmission of information
data. The block of data x′ = [x′

0, ..., x
′
Nc−1]

t is modulated in
the time domain by IFFT. The channel is modeled by linear fil-
tering. Some redundancy is introduced into the transmitted signal
by cyclic prefix extension so that the overlapping introduced by
the channel memory corresponds to that of a circular convolution
between x and the channel. Consequently, the channel is viewed
in the frequency domain after demodulation by the FFT as paral-
lel flat fading channels. Hence, the block x can easily be retrieved
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from the corresponding received block y′ = [y′
1, ..., y

′
Nc]

t by FFT
and IFFT. Let h′ = [h′

0, ..., h
′
P−1]

t denote the OFDM channel,
the received signal can be modeled by the following equation :

y′ = Diag(x′)H′ + e′ (1)

where H′ = SFh′, F is the P×P Fourier matrix, S is the Nc×P
matrix selecting the Nc information sub-carriers S = [0

Nc, P−Nc
2

INc 0
Nc, P−Nc

2
], and e′ is a centered gaussian noise vector with

variance σ2
e

Note that h′
i = 0 for i ≥ L, where L denotes the cyclic prefix

length. From now on, vectors x′, y′ and H′ denote respectively
the data vector, the observation vector and the channel coefficient
vector for a given OFDM symbol. The OFDM systems are desi-
gned such that L < P (in IEEE802.11a, L = P/4). The taps are
assumed independent and Rayleigh distributed.
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Fig. 1. Conventional OFDM Transceiver

3. EM-MAP ALGORITHM

Since diversity improves performances of ML or MAP estima-
tors, a channel model which is piecewise constant has been propo-
sed in [5] : it has the same channel coefficient for the transmission
of several consecutive symbols. The application of the MAP ver-
sion of the EM algorithm to this channel model made it possible
to improve considerably the performances in term of channel esti-
mation. First, the EM-MAP algorithm is quickly reviewed.

Assume that the channel coefficient Hk can be modeled as
the output of a stationary autoregressive (AR) process of order 1,
namely : Hk = αHk−1 + εk, where α is the time correlation co-
efficient and εk is an additive white gaussian noise of mean 0 and
variance σ2

ε . Hk denotes the channel coefficient of the block k and
is supposed constant over a block of length T. The parameter σ2

ε

is unknown and will be estimated by the proposed procedure. On
another side, α is assumed to be known. Indeed, α can be perfectly
determined when the Doppler spread Bd and the delay spread Tm

are known thanks to Jakes’ model :
Φ(∆f, ∆t) = Φ(0, 0) J0(πBd∆t)

1+j2πTm∆f

where Φ(∆f, ∆t) is the channel time-frequency covariance func-
tion for a classical Doppler power spectrum and an exponential
multipath intensity profile with mean power Φ(0, 0) and J0 is the
zero-order Bessel function of the first kind.
Let α̃ (α̃ = Φ(0, 0)J0(πBd∆t)) denote the correlation coefficient
for the true channel, then the correlation coefficient α (used in the
block model) is set to α = (α̃)T , where T denotes the block size.
The EM algorithm has been easily modified to produce the MAP
estimate. Using matrix notations, one has obtained for a given sub-
carrier :

y = XH + e (2)

MH = ε + b (3)

where M is a q × q matrix given by :

M =

��������
�

1 0 · · · · · · 0

−α 1
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −α 1

� �������
�

The auxiliary function : Q(H, σ2
e , σ2

ε , H(i), σ
2(i)
e , σ

2(i)
ε )

= �
m

P (Sm|y,H(i), σ2(i)
e )[log P (y|Sm, H; σ2

e)

+ log P (H, σ2
ε) + cte] (4)

with P (y,Sm | H, 1
σ2

e
) = P (Sm) 1

σ2N
e

exp(− 1
σ2

e
‖y−SmBH‖2)

and P (H, σ2
ε) ∝ 1

σ
2q
ε

exp(− 1
σ2

ε
(H−M−1b)∗C−1(H−M−1b))

where σ2
εC is the covariance matrix of H. By setting to zero the

derivative of Q(H, σ2
e , σ2

ε ,H(i), σ
2(i)
e , σ

2(i)
ε ) with respect to H∗,

we obtain :

[
1

σ2
e

D

Γ
+

1

σ2
ε

C−1]H(i+1) =
1

σ2
e

V

Γ
+

1

σ2
ε

M∗b (5)

where matrix D, vector V and Γ are given by :

D = �
m

P (Sm|y, H(i), σ2(i)
e )B∗S∗

mSmB (6)

V = �
m

P (Sm|y, H(i), σ2(i)
e )B∗S∗

my (7)

Γ = �
m

P (Sm|y, H(i), σ2(i)
n ) (8)

The the current channel estimates are obtained by solving the li-
near system (5) by a Gauss method. This step has a quadratic arith-
metic complexity.

By similar calculations, we obtain the update formulae of the
channel noise variance and of the noise variance which have a li-
near arithmetical complexity.

4. SIMPLIFIED EM-MAP

Two main points are very important in the design of a good
channel estimator, namely : the number of pilot symbols which
must be as small as possible and the estimator arithmetic com-
plexity which must also be as small as possible. EM-MAP algo-
rithm realizes a good estimation but its complexity is still impor-
tant. We propose an alternative to reduce arithmetic complexity
while keeping good performances in term of channel estimation
and bit error rate.

4.1. One Step Late (OSL) algorithm
The methodology of the EM algorithm consists, by a judicious

choice, in reformulating the incomplete-data problem by complete-
data problem. This algorithm usually gives explicit expressions for
the parameter Θ maximizing the auxiliary function Q(Θ,Θ(i)).
But in many situations, the corresponding update obtained is far
more complicated. This is particularly likely to be so if the prior
probability term represents a roughness penalty, when each com-
ponent of the derivative typically involves several components of
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Θ. In our case, however, it is possible to modify this algorithm
quite simply, in order to avoid this difficulty. After each update
process, replace Θ(i) by the new parameter which maximizes the
current auxiliary function. The main idea consists in computing the
derivative of the prior probability at the current value of Θ, rather
than at the new value. An intuitive justification of this procedure
is that if the algorithm converges slowly, the derivative compu-
ted at Θ(i) and Θ(i+1) will not be much different [7]. Moreover,
it can straightforwardly be seen that this method has exactly the
same fixed points than the original algorithm. In the general case
however, the OSL algorithms are not guaranteed to converge nei-
ther to increase the penalized log-likelihood. We prove in section
4.3 below that the proposed algorithm converges and increases the
penalized log-likelihood.

4.2. Algorithm description
From (3), we see that the log-probability of H reads :

log(p(H)) = − 1

σ2
ε

(H −M−1b)∗C−1(H − M−1b) − q log(σ2
ε)

The quadratic complexity of the EM-MAP algorithm is due to the
quadratic term − 1

σ2
ε
H∗C−1H since C−1 is not a diagonal matrix.

Following the One Step late (OSL) technique, we replace the gra-
dient of − 1

σ2
ε
H∗C−1H with respect to H∗ by the gradient com-

puted at H = H(i). An analogous expression could have also been
obtained by replacing p(H) with p′(H) defined as :

log(p′(H)) = − 1

σ2
ε

[(H − M−1b)∗C−1(H − M−1b)

−(H −H(i))∗C−1(H − H(i))] − q log(σ2
ε) (9)

However, we prefer to consider a new prior p′′(H) such that :

log(p′′(H)) = log(p′(H))− β

σ2
ε

(H−H(i))∗(H−H(i)) (10)

where the second term is introduced to ensure the convergence of
the method. This point will be addressed in the next section where
we will also explain how to choose the value of the parameter β.
With this new prior p′′(H), the update equation for the channel
parameter is given by :

[
1

σ2
e

D

Γ
+

β

σ2
ε

I ]H(i+1) =
1

σ2
e

V

Γ
+

1

σ2
ε

M∗b

− 1

σ2
ε

C−1H(i) +
β

σ2
ε

H(i) (11)

where D,V,Γ are defined in section 3. The update equation for the
variances σ2

e and σ2
ε are unchanged. We can remark that H(i+1) is

multiplied by a diagonal matrix. The computational complexity of
this step is then linear [5].
Moreover, when this algorithm converges, the fixed points are the
fixed points of the EM-MAP.

4.3. Convergence study

It was recently shown that the EM algorithm can be viewed
as a particular case of a PPA (Proximal Point Algorithm) [8]. An
elegant way to prove the convergence of the EM algorithm is to
consider it as a particular case of PPA algorithm. We rely on these
results to establish the convergence of our modified algorithm.

4.3.1. Convergence of the PPA and link with the EM-MAP algo-
rithm

A generalized PPA type algorithm is defined by the iterative
process [8] :

Θ̂(i+1) = arg max
Θ

{ε(Θ) − βid(Θ , �Θ (i))} (12)

where βi is a sequence of positive number and d(Θ , �Θ (i)) is a
penalty function such that :�

d(Θ , �Θ (i)) ≥ 0

d(Θ , �Θ (i)) = 0 if and only if Θ = �Θ(i)

The original PPA with d(Θ , �Θ (i)) = ‖Θ − �Θ (i)‖2 was propo-
sed and studied in [4]. One can easily show that {ε(Θ(i)), i =
0, 1, 2...} is a nondecreasing sequence [8], meaning that :

ε( �Θ(i+1)) − ε( �Θ(i)) ≥ 0 ∀i ∈ N

It turns out that the EM-MAP is a PPA with ε(Θ) = log p(y|Θ)+
log(Θ), βi = 1 and

d(Θ , �Θ (i)) = DKL (13)

= � p(x|y,Θ(i)) ‖ p(x|y,Θ) � (14)

= � p(x|y, �Θ(i)) log
p(x|y, �Θ(i))

p(x|y,Θ)
dx (15)

= E � log p(x|y, �Θ(i))

p(x|y,Θ)
|x, �Θ(i) � (16)

Since d(Θ , �Θ (i)) is a Kullback-Liebler (KL) divergence, both condi-
tions d(Θ , �Θ (i)) ≥ 0 and d(Θ , �Θ (i)) = 0 if and only if Θ =�Θ (i) are verified. Moreover ε(Θ) appears to be the a posteriori
log-probability. Thus the EM-MAP algorithm increases (or keep
constant) the a posteriori probability(APP) when the number of ite-
rations increases. Consequently, the EM-MAP algorithm converges
to a stationary point of the APP. Obviously, this is not a new result
but this method is well suited for studying the convergence of the
proposed algorithm.

4.3.2. Modified EM-MAP convergence

The modification introduced by the OSL-like method consists
in replacing the prior log(p(H)) by log(p′′(H)). The relationship
between log(p(H)) and log(p′′(H)) can be expressed as :

log(p′(H)) = log(p(H))+
1

σ2
ε

(H−H(i))∗(C−1−βI)(H−H(i))

(17)
This new algorithm is a PPA defined by the iteration :�Θ(i+1) = arg max

Θ
(ε(Θ) − βid

′(Θ, �Θ(i))) (18)

where ε(Θ) is still the a posteriori log-probability and d′(Θ, Θ(i)) =

d(Θ, Θ(i))+ 1
σ2

ε
(H−H(i))∗(βI−C−1)(H−H(i)) and βi = 1.

The matrix βI−C−1 must be a positive definite matrix to satisfy :�
d ′(Θ , �Θ (i)

) ≥ 0

d ′(Θ , �Θ (i)
) = 0 if and only if Θ = �Θ(i)
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EM-MAP (0 m/s) EM-OSL (0 m/s)

10 dB 2.6875e-2 2.392e-2
12 dB 5.5539e-3 4.8848e-3

Table 1. BER comparison for a static bran c channel

EM-MAP (3 m/s) EM-OSL (3 m/s)

10 dB 3.6567e-2 3.046e-2
12 dB 7.0767e-3 7.8444e-3

Table 2. BER comparison for a bran c channel with a velocity of
3 m/s

By providing a majoration of the Rayleigh quotient of the hermi-
tian matrix C−1, we prove that all the eigenvalues of C−1 are less
or equal to (1 + α)2. We then choose β > (1 + α)2. Note that
the value of β does not appear in the expression of the fixed point.
However, this parameter may have some influence on the speed of
convergence of the method but we did not elaborate on this matter
for the moment. In conclusion, the proposed method has exactly
the same fixed points than the original EM-MAP algorithm, the a
posteriori probability increases (or at least does not decrease) with
the iterations provided that β > (1 + α)2 and the computational
complexity is linear.

5. SIMULATIONS
Simulations have been performed in the specific context of HI-

PERLAN/2 broadband wireless communication standard, which
is similar to IEEE802.11a and MMAC. HIPERLAN/2 is a system
operating at the 5 GHz and using a 20 MHz bandwidth at typical
SNR value of 0 − 20 dB for slowly terminal speeds. The cyclic
prefix is 16 samples long and the number of carriers is Nc = 64.
A rate R = 1/2, constraint length l = 7 Convolutional Code (CC)
(171/133) is used before bit interleaving followed by 16-QAM
mapping. Only 48 carriers are effectively used. Monte Carlo si-
mulations are run and averaged over 5000 realizations of a BRAN
C frequency selective channel in order to obtain BER curves. A
classical Jake’s Doppler spectrum and Rayleigh fading statistics
are assumed for all taps. Results are provided both for static chan-
nel and for time-varying channels for several terminal speeds, as
specified in the HIPERLAN/2 standard. These speeds are suppo-
sed to be known from the receiver. Each frame processed contains
2 known training symbols, followed by 100 OFDM data symbols.
The bit probabilities P (bm

l ) estimates are performed in the E-step
by two iterations of the turbo demodulation process, which is an
iterative joint demapping algorithm yielding a better estimation of
P (bm

l ) than classical methods like BJCR algorithm. The block size
is set to T = 20 for Doppler speeds less than 3m/s and to T = 10
for speeds higher than 3m/s. We choose β = 2(1 + α2). The es-
timation process is repeated until the mean square errors of the
channel coefficients matrix and the channel noise variance are lo-
wer than 10−8 simultaneously. We compare performances in term
of channel estimators between the EM-Block [5], the EM-MAP
and the EM-OSL (the proposed algorithm) algorithms. Figure 2
depicts the mean square error as a function of SNR. It appears
clearly that the simplified MAP algorithm, which has a linear com-
plexity, performs better than the EM-Block algorithm and has the
same performances that the initial EM-MAP algorithm. Tables 1
and 2 confirm this results in term of BER.
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Fig. 2. MSE for channel with a velocity of 3 m/s

6. CONCLUSION
This paper has presented a new blind channel estimation concept

for OFDM systems. Making use of the diversity introduced by
the fact that, for slowly time-varying channels the channel coef-
ficient does not change quickly from one symbol to another. This
idea has been used to develop three algorithms based on the EM
algorithm. The direct application of a block model showed im-
proved performance of the corresponding MAP version. This ver-
sion still improves the performances in terms of channel estima-
tion or BER, however the corresponding complexity is important.
We then proposed a simplified version inspired by the OSL algo-
rithm which has a linear complexity and performs as well as the
MAP algorithm. Further work consists in taking into account a
time-frequency model of the channel variations in the EM Block
procedure in order to still improve the performances. All of these
methods can also be used in the MIMO-OFDM context, where
several works already focused on the EM algorithm to perform
channel estimation.
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