
EFFICIENT SOFT DEMODULATION IN MIMO-OFDM SYSTEMS
WITH BICM AND CONSTANT MODULUS ALPHABETS

Dominik Seethaler, Gerald Matz, and Franz Hlawatsch

Institute of Communications and Radio-Frequency Engineering, Vienna University of Technology
Gusshausstrasse 25/389, A-1040 Vienna, Austria (Europe)

phone: +43 1 58801 38958, fax: +43 1 58801 38999, email: dominik.seethaler@tuwien.ac.at
web: http://www.nt.tuwien.ac.at

ABSTRACT
MIMO-OFDM using bit-interleaved coded modulation (BICM) is
an attractive scheme for wireless communications in frequency-
selective fading channels. The BICM decoder requires log-
likelihood ratios (LLRs) whose exact computation is extremely
costly. In this paper, we present a novel method termed soft sphere-
projection algorithm (SSPA) that provides approximate LLRs for
the case of constant modulus symbol alphabets. The SSPA has very
low computational complexity and performs nearly as well as the
list sphere decoder. These properties are demonstrated by numeri-
cal simulations using synthetic and measured MIMO channels.

1. INTRODUCTION

MIMO-OFDM with bit-interleaved coded modulation (BICM) is a
promising technique for wireless communications over frequency-
selective fading channels (e.g., [1–4]). Such systems usually employ
a two-stage receiver consisting of a soft demodulator and a chan-
nel decoder. The soft demodulator computes log-likelihood ratios
(LLRs)—i.e., soft values—for the coded bits; these LLRs are used
by the decoder as bit metrics. Unfortunately, exact LLR calculation
is computationally very costly. Various efficient MIMO-BICM soft
demodulation algorithms providing approximate LLRs have there-
fore been proposed, such as the list extension of the Fincke-Phost
sphere decoding (LFPSD) algorithm [5] and algorithms based on
zero-forcing (ZF) or minimum mean-square error (MMSE) equal-
ization [4, 6, 7].

In this paper, we present a novel soft demodulation method,
termed soft sphere-projection algorithm (SSPA), that is applicable
to constant modulus alphabets. The SSPA is based on the (hard-
decision) sphere-projection algorithm (SPA) [8, 9] and achieves
nearly the performance of the LFPSD at a small fraction of the
LFPSD’s computational complexity. We note that a similar ap-
proach using a different hard-detector was described in [10]. We
also present methods that exploit subcarrier correlation for a further
reduction of the computational complexity of the SSPA in MIMO-
OFDM/BICM systems.

The paper is organized as follows. In Section 2, we provide some
background on MIMO-OFDM using BICM. The SSPA is outlined
in Section 3 and described in more detail in Section 5 (Section 4
reviews the SPA). Simulation results and conclusions are provided
in Section 6 and 7, respectively.

2. MIMO-OFDM WITH BICM

System Model. We consider a BICM-based MIMO-OFDM sys-
tem (see e.g. [2, 4]) with MT transmit antennas, MR ≥ MT receive
antennas, and K subcarriers. A block of information bits is passed

through a channel coder and an interleaver. The coded and inter-
leaved bits are mapped to complex data symbols dm,k ∈ A that are
transmitted on the mth antenna and kth subcarrier (m = 1, . . . ,MT,
k = 0, . . . ,K −1). Throughout this paper, we assume Gray labeling
and a constant modulus symbol alphabet A with |dm,k| = 1.

The impulse response of the frequency-selective MIMO channel
is assumed to have L taps H[l], l = 0, . . . ,L−1. The MIMO-OFDM
modulator and demodulator convert the frequency-selective MIMO
channel into K parallel flat fading MIMO channels acting as

rk = Hk dk +wk, k = 0, . . . ,K−1. (1)

Here, rk denotes the received vector, Hk = ∑L−1
l=0 H[l]e− j2π kl

K is the

channel matrix, dk
�
= (d1,k · · ·dMT,k)

T ∈ D
�
= A MT is the transmit

vector, and wk is additive white Gaussian noise.
Using rk and Hk, the soft demodulator calculates (approximate)

LLRs for each of the MTlog2|A | code bits associated with dk. After
deinterleaving, the LLRs from all layers and subcarriers serve as bit
metrics for the soft-input channel decoder.
LLR Calculation. In what follows, we will omit the subcarrier
index k to simplify notation. Let bm,i, i = 1, . . . , log2|A | denote the
bit label of the symbol dm ∈A of the mth layer. We assume that the
code bits bm,i are i.i.d. uniform. Using the log-sum approximation
[2, 5] and ignoring scaling factors irrelevant to our setup, the LLR
for bm,i equals

Λm,i
�
= λm,i

0 −λm,i
1 , with λm,i

b �
= min

d∈Db
m,i

ψ2(d) . (2)

Here, ψ2(d)
�
= ‖r−Hd‖2 and Db

m,i denotes the set of all transmit
vectors whose label at layer m and bit position i equals b ∈ {0,1}.
Note that Db

m,i consists of all data vectors d with dm ∈A b
i and dm′ ∈

A , m′ �= m, where the reduced alphabet A b
i is obtained by retaining

only those symbols of A whose bit label at position i equals b. In
practice, exact soft demodulation according to (2) may be unfeasible
since its complexity scales exponentially with MT.

Soft demodulation is closely related to the ML detector

d̂ML = argmin
d∈D

‖r−Hd‖2 = argmin
d∈D

ψ2(d) . (3)

Denoting the ith bit of the mth component of d̂ML as (d̂ML)m,i = b,
it follows that d̂ML ∈ Db

m,i and hence we immediately obtain

λm,i
b = ψ2(d̂ML) . (4)

However, (3) also has exponential complexity and one must still

compute the term λm,i
b̄ in (2) (b̄ = 1−b denotes bit flipping).
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3. BASIC IDEA OF THE SSPA
The idea behind the SSPA is as follows. The SPA [8,9] is an efficient
approximation to the ML detector. It replaces D with a reduced
search set D̃ to obtain a hard decision

d̂SP
�
= arg min

d∈D̃

ψ2(d) (5)

such that ψ2(d̂SP)≈ψ2(d̂ML) (Section 4 will provide more details).
This together with (4) yields the approximation

λm,i
b ≈ λm,i

b˜ �
= ψ2(d̂SP) , for b = (d̂SP)m,i .

It remains to calculate a similar approximation for λm,i
b̄ . A com-

parison of (2) and (4) reveals that such an approximation could in
principle be obtained by applying the SPA with D b̄

m,i instead of D ,
i.e.,

λm,i
b̄ ≈ λm,i

b̄˜ �
= min

d∈D̃ b̄
m,i

ψ2(d) . (6)

Here D̃ b̄
m,i is the reduced search set corresponding to D b̄

m,i. In gen-
eral, computing (6) requires a second SPA pass. However, we will
show in Section 5 that this second SPA pass can be circumvented

and λm,i
b̄˜ can be calculated with little additional effort using inter-

mediate results of the first SPA pass. In fact, all vectors d̃ ∈ D̃ b̄
m,i

can be obtained by a requantization of the vectors d ∈ D̃ and the
associated distances ψ2(d̃) can be computed via simple updates of
ψ2(d) (see Section 5 and in particular (9)). The SSPA for one sub-
carrier can be summarized as follows:

Step 1: Use the SPA to calculate the reduced search set D̃ , the
associated distance set Ψ = {ψ2(d), d ∈ D̃}, the detector output
d̂SP, and ψ2(d̂SP), the minimum element of Ψ.

Step 2: For each m ∈ {1, . . . ,MT} and i ∈ {1, . . . , log2|A |}:

• determine b = (d̂SP)m,i and set λm,i
b˜ = ψ2(d̂SP);

• calculate Ψb̄
m,i = {ψ2(d), d∈ D̃ b̄

m,i} by requantizing each d∈
D̃ and performing the distance update (9);

• obtain λm,i
b̄˜ as the minimum element of Ψb̄

m,i;

• finally, calculate the approximate LLR

Λm,i ≈ (1−2b)
(
λm,i

b˜ −λm,i
b̄˜ )

,

where the factor 1−2b ∈ {−1,1} serves to adjust the sign.

We recall that the SSPA has to be performed for each subcarrier
separately (cf. (1)). For MT = MR, the overall complexity can be
shown to scale as O(KM3

T|A | log2 |A |).
4. REVIEW OF THE SPA

Before explaining the SSPA in more detail, we provide a short re-
view of the hard-decision SPA (see [8, 9] for further details). In
essence, the SPA is an add-on to an arbitrary reference detector (in
this paper we restrict to ZF and MMSE detectors) that uses a re-
duced search set D̃ to approximate the ML detector (cf. (5)). The

reduced search set is given by D̃
�
= {d̂}∪P . Here, d̂ = Q{y} is

the reference detector output (y is the output of the ZF or MMSE
equalizer and Q{y} denotes elementwise quantization with respect
to A ) and P is an additional search set (see next paragraph).
Apart from D̃ , the SPA provides the corresponding distance set
Ψ = {ψ2(d), d ∈ D̃} and d̂SP = argmind∈D̃

ψ2(d). One can show
that |D̃ | ≤ |A |MT +2 (e.g., for MT = 6 and 4-QAM, the size of the
reduced search set D̃ is less than 26 while the full search set D has

Im{yC,m(φ)}

φ = 0

C1

C3

Re{yC,m(φ)}

φ = 0

I6 I7 I8I5

φ = 0

φ = 0

I1I1 I2 I3 I4

Ĩ6Ĩ5 Ĩ1Ĩ1 Ĩ2 = I2 ∪ I3 Ĩ3 Ĩ4 = I5 ∪ I6
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Figure 1: Illustration of SPA geometry for a 4× 4 MIMO channel and
4-QAM modulation: (a) component circles Cm and (b) associated angle
intervals Ir (corresponding to P) and Ĩr (corresponding to P0

3,2). Here,

A 0
2 =

{ 1+j√
2
, 1−j√

2

}
.

size 4096). The computational complexity of the SPA (not counting
the complexity of the reference detector) is O(|A |M2

T).
The construction of P is based on approximating H by an ideal-

ized bad channel (IBC). Furthermore, it exploits the constant mod-
ulus property which implies that all data vectors lie on an MT-
dimensional hypersphere H , i.e., D ⊂ H . The center of this hy-
persphere is the origin and its radius equals R =

√
MT. The IBC

captures essential properties of a poorly conditioned channel H by
approximating the smallest singular value of H with zero and the
remaining singular values with the largest singular value.

In what follows, let v denote the right singular vector of H corre-
sponding to the smallest singular value. With the IBC approxima-
tion, it is shown in [8,9] that ψ2(d) is small if and only if d is close
to the reference line

L : yL (α) = α v+y⊥ , α ∈ C , (7)

where y⊥ = (I−vvH)y denotes the component of y orthogonal to v.
For that reason, P will be composed of data vectors that are close
to L . Here, two cases can be distinguished.

Case I. If L intersects H , P is chosen to consist of data vectors
close to the intersection circle C = L ∩H that is given by

C : yC (φ)
�
=

√
R2 −‖y⊥‖2 e jφ v + y⊥ , φ ∈ [0,2π) .

Evidently, the data vector closest to yC (φ) equals Q{yC (φ)}. Thus,
P consists of all data vectors obtained as Q{yC (φ)} for all possible
angles φ . For an efficient construction of P , C is viewed as the
collection of MT component circles Cm in the symbol domain (see
Fig. 1(a)). If we move along C by varying φ , the mth component of
yC (φ) moves along Cm. The first data vector in P is obtained as
d1 = Q{yC (0)}. Then φ is increased until one of the components
of yC (φ) crosses the boundary of a symbol decision region; at that
point, a second data vector d2 is added to P . This procedure is
continued until we have moved along the whole intersection circle
C . Thus, each data vector dr ∈P , r = 1, . . . , |P| is associated with
a specific interval Ir of the angle parameter φ , i.e., dr = Q{yC (φ)}
for any φ ∈ Ir (cf. Fig. 1).
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Case II. If L and H do not intersect, then y⊥ is the point of
L closest to H [8], and thus d1 = Q{y⊥}. The remaining data
vectors in P are chosen as the nearest neighbors of d1, which can
be easily found by substituting the two nearest-neighbor symbols
for the individual components of d1.

5. SSPA IMPLEMENTATION DETAILS

Preliminaries. Recall that D b̄
m,i consists of all data vectors d with

dm ∈ A b̄
i and dm′ ∈ A , m′ �= m. Thus, when determining the re-

duced search set D̃ b̄
m,i = {d̂b̄

m,i}∪P b̄
m,i for (6), the main difference to

the initial SPA pass is that quantization and nearest neighbor search
for layer m are limited to the reduced alphabet A b̄

i . The efficient
implementation of the SSPA is based on the following fundamen-
tal observation. For Gray labeling and a constant modulus alphabet
whose size is a power of two, it can be shown that quantization
with respect to the reduced alphabet A b̄

i (denoted Qb̄
i {·}) remains

unchanged when preceded by quantization with respect to A , i.e.,

Qb̄
i {y} = Qb̄

i {Q{y}}. (8)

This means that the decision boundaries for A b̄
i form a subset of the

boundaries for A . Thus, any quantization with respect to A b̄
i can be

performed using A -quantized values. This allows one to determine
D̃ b̄

m,i solely by using D̃ (see below).

The basic operation to obtain a data vector d̃ ∈ D̃ b̄
m,i is the re-

quantization of the mth component of d ∈ D̃ (the other components
remain unchanged):

d̃m′ =

{
Qb̄

i {dm} , if m′ = m,

dm′ , if m′ �= m.

On the vector level, this requantization of the mth component will
be denoted d̃ = Qb̄

m,i{d}. For the reference detector output, we thus

have d̂b̄
m,i = Qb̄

m,i{d̂}. It remains to determine P b̄
m,i.

Construction of P b̄
m,i. If L intersects H (case I in Section 4),

each data vector dr ∈ P is associated to a specific interval Ir, i.e.,
dr = Q{yC (φ)} for any φ ∈ Ir. For P b̄

m,i, we now use A b̄
i instead

of A for layer m. Thus, each data vector d̃r ∈ P b̄
m,i is obtained

as d̃r
m = Qb̄

i {yC ,m(φ)} and d̃r
m′ = Q{yC ,m′(φ)}, m′ �= m, for φ in a

specific interval Ĩr. Property (8) implies that an interval Ĩr either
equals an interval Ir or is a union of adjacent intervals Ir (cf. Fig.
1(b)). This is due to the fact that some decision boundaries for A

and the corresponding intersections with the mth component circle
Cm are no longer present for the reduced alphabet A b̄

i . It follows

that the entire set P b̄
m,i can be obtained by requantizing every data

vector dr ∈ P , i.e., d̃r = Qb̄
m,i{dr}. In that way, data vectors d̃r

associated to an interval Ĩr that is the union of two or more intervals
Ir will be multiply obtained. We do not take this into account, since
the resulting complexity reduction would be insignificant.

If L and H do not intersect (case II in Section 4), P consists
of d1 = Q{y⊥} and all its nearest neighbors. Thus, d̃1 ∈ P b̄

m,i is

obtained as d̃1 = Qb̄
m,i{d1}. Furthermore, for constant modulus

alphabets it can be checked quite easily that Qb̄
m,i{dr}, dr ∈ P ,

r = 2, . . . , |P| yields the entire set of nearest neighbors of d̃1.

Efficient Calculation of Ψb̄
m,i. To calculate λm,i

b̄˜ according to (6),

we need the distance set Ψb̄
m,i associated to D̃ b̄

m,i. The evaluation of

ψ2(d̃) has roughly complexity O(MTMR). We next show that the
distances ψ2(d̃), d̃ ∈ D̃ b̄

m,i can be obtained via a low-complexity up-

date of ψ2(d), d ∈ D̃ , provided that the error vectors e(d)
�
= r−Hd

were stored during the first SPA pass. Consider the requantized data

vector d̃ = Qb̄
m,i{d} and let ∆b̄

m,i
�
= d̃m − dm denote the difference

between the mth components of d̃ and d. It can then be shown that

ψ2(d̃) = ψ2(d)+‖hm‖2 |∆b̄
m,i|2 −2Re

{
eH(d)hm ∆b̄

m,i

}
, (9)

where hm denotes the mth column of H. This update requires
roughly O(MR) operations.

Exploiting Subcarrier Correlation. In a MIMO-OFDM system
with BICM, the SSPA has to be run for each subcarrier. Further
computational savings are possible by exploiting the strong correla-
tion of the MIMO channel matrices Hk of nearby subcarriers [11]
(now, we take the subcarrier index k again into account, see (1)).
In particular, this allows us to use efficient interpolation schemes
(e.g. [11]) to calculate the inverses of Hk, k = 1, . . . ,K required by
the ZF or MMSE reference detector.

For the SSPA, we further need the right singular vector vk corre-
sponding to the smallest singular value of Hk (see (7)). Since vk also
is the eigenvector of the inverse Gram matrix1 Gk = (HH

k Hk)
−1 as-

sociated to the largest singular value, it can be efficiently computed
by means of a few iterations of the power method [12]:

v( j)
k =

Gkv( j−1)
k∥∥Gkv( j−1)
k

∥∥ , j = 1, . . . ,J.

Usually, these iterations are initialized with a random vector v(0)
k .

However, since it can be expected that vk does not change dramat-
ically from one subcarrier to another, we propose to initialize the
power method with the singular vector computed for the preceding

subcarrier, i.e., v(0)
k = v(J)

k−1. In general, this significantly reduces
the number of iterations required. In our numerical simulations (see
next section), we even used J = 1, i.e., just a single iteration (matrix-
vector product plus normalization) for the singular vector update
(apart from the first subcarrier where we used a random initializa-
tion and J = 5).

6. SIMULATION RESULTS

We next provide simulation results to illustrate the packet error rate
(PER) performance and computational complexity of the SSPA for
synthetic and measured frequency-selective MIMO channels. We
simulated a BICM-based MIMO-OFDM system with MT = MR = 4
transmit and receive antennas, K = 128 subcarriers, a rate-1/2 16-
state convolutional code with octal generators (23,35), 4 bits trellis
termination, a random block interleaver, 4-QAM symbol alphabet,
and Gray labeling (thus, each MIMO-OFDM symbol carries 508 in-
formation bits). At the receiver, a Viterbi decoder with a traceback
depth of 25 was employed for channel decoding. As soft demodula-
tors, we used the SSPA in conjunction with ZF and MMSE detectors
as reference detectors (denoted SSPA-Z and SSPA-M, respectively),
the LFPSD [5], and ZF-based and MMSE-based soft demodulation
according to [6] and [7], respectively. SSPA-Z was considered be-
sides SSPA-M since it has the advantage that knowledge of the noise
variance is not required. The LFPSD used LLR thresholds ±8 and
32 canditate data vectors inside the hypersphere.

1We note that the Gk’s can also be computed efficiently using the inter-
polation techniques in [11].

IV ­ 107



LFPSD

SSPA-M

SSPA-Z

MMSE

ZF

4 10 12

SNR [dB]

100

10−1

10−2

0 2 8 14 166

synthetic channel

MT = MR = 4

L = 3 K = 128

P
E

R
(a)

LFPSD

SSPA-M

SSPA-Z

MMSE

ZF

4 10 12

SNR [dB]

100

10−1

10−2

0 2 8 14 166

measured channel

MT = MR = 4

P
E

R

L = 20 K = 128

(b)

Figure 2: PER performance of various soft-demodulation schemes versus
SNR for (a) a synthetic MIMO channel, (b) a measured MIMO channel.

Synthetic Channel. We first consider a synthetic MIMO chan-
nel with L = 3. The channel taps H[l] are spatially and temporally
i.i.d. The PER obtained with the different soft demodulation algo-
rithms versus SNR is shown in Fig. 2(a). For a PER of 10−2, SSPA-
M achieves virtually the same performance as LFPSD and SSPA-Z
performs less than 1 dB worse. ZF-based and MMSE-based demod-
ulation perform more than, respectively, 8 dB and 2dB worse than
their SSPA counterparts. In contrast to ZF/MMSE-based demodu-
lation, SSPA-M apparently does not incur any diversity loss.

Measured MIMO Channel. Next we evaluate all schemes using
indoor MIMO channel measurements obtained at Vienna Airport.2

The transmitter and receiver positions were fixed and there was no
line of sight. The channel data comprised 4452 impulse response
snapshots of length L = 20. Fig. 2(b) again shows PER versus SNR
for the various soft demodulators. While in general PER perfor-
mance for the measured channel (specifically the coding gain) is
somewhat poorer, the relations of the individual algorithms to each
other are quite similar to the synthetic case. To achieve a PER of
10−2, an SNR of about 9.5 dB, 11.3 dB, 12.8 dB, 13.3 dB, and 20 dB
is required for LFPSD, SSPA-M, SSPA-Z, MMSE, and ZF, respec-
tively. The gap between SSPA-M and LFPSD now is larger, which
can be attributed to spatial channel correlations that reduce the qual-
ity of the IBC approximation underlying the SSPA.

Computational Complexity. For a rough comparison of the
computational complexity of the various demodulators, we provide
MATLAB kflops (per subcarrier and OFDM symbol) measured in

2The authors thank N. Czink for providing the measurement data. A
detailed description of the measurement campaign can be found in [13].

the synthetic simulation setup within 100 OFDM symbols at an
SNR of 7dB. We did not count the calculations for the equalizers
(required for ZF/MMSE and SSPA) and QR-decompositions (re-
quired for LFPSD). With LFPSD and SSPA, complexity depends
on the individual channel realization. The LFPSD required up to
118.2 kflops with an average of 44 kflops. With the SSPA, on av-
erage 4.2 and at most 6.7 kflops were required. The complexity of
ZF/MMSE based demodulation was 0.3 kflops. We conclude that
SSPA is more complex than ZF and MMSE, but an order of magni-
tude more efficient than LFPSD.

7. CONCLUSIONS
The soft sphere-projection algorithm (SSPA) is a novel soft demod-
ulation technique for MIMO-OFDM systems using bit-interleaved
coded modulation (BICM). The SSPA is based on the (hard-
decision) sphere-projection algorithm (SPA) and exploits interme-
diate SPA results to obtain approximate log-likelihood ratios with
very low computational effort. Simulation results demonstrated that
the performance of the SSPA is similar to that of Fincke-Phost list
sphere decoding although the computational complexity is signif-
icantly smaller. Thus, the SSPA offers an excellent complexity-
performance compromise for MIMO-OFDM/BICM systems.
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