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ABSTRACT

In modern DSL systems, multi-user crosstalk is a major source of
performance degradation. Optimal Spectrum Balancing (OSB) is a
centralized algorithm that optimally allocates the available transmit
power over frequencies, thereby mitigating the effect of crosstalk.
OSB uses Lagrange multipliers to enforce constraints that are cou-
pled over frequencies. However, finding the optimal Lagrange mul-
tipliers can become complex when more than two users are consid-
ered. This paper presents a number of properties of the Lagrange
multipliers which lead to an efficient search algorithm. Simulations
show that the required number of Lagrange multiplier evaluations is
independent of the number of users and much smaller compared to
the number of evaluations of currently known search algorithms.

1. INTRODUCTION

The ever increasing demand for higher data rates forces DSL systems
to use higher frequencies, up to 30 MHz for VDSL2. At these fre-
quencies, electromagnetic coupling becomes particularly harmfull
and causes crosstalk between systems operating in the same bundle.
This crosstalk, typically 10-15 dB larger than the background noise,
is a major source of performance degradation in DSL systems cur-
rently under development.

To mitigate crosstalk, current DSL systems use a Static Spec-
trum Management (SSM) approach where fixed spectral masks en-
sure that crosstalk levels remain within an acceptable range [1]. Be-
cause these spectral masks are designed for worst case loop char-
acteristics, this approach can be extremely suboptimal. Dynamic
Spectrum Management (DSM) overcomes this problem by design-
ing the transmit spectrum of each modem according to the topology
of the network. In this way spectra take into account the current
requirements of all users, causing as little disturbance as possible.

One of the first DSM algorithms proposed is Iterative Water-
filling (IW) [2], a low complexity distributed algorithm. Each user
iteratively waterfills its spectrum against the noise and interference.
Although IW significantly outperforms SSM, it is not optimal. This
is especially so in heavily unbalanced scenarios, where some lines
cause much more crosstalk than others (e.g. near-far scenario).

The Optimal Spectrum Balancing (OSB) algorithm [3] [4] pro-
vides a computationally tractable way to calculate optimal transmit
spectra. By optimizing a weighted rate sum, this algorithm can make
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every possible trade off between the rates of different users. The
damage done to other modems in the network is taken into account
explicitly, avoiding a selfish optimum and thereby improving on the
performance of IW. However, this can only be done when complete
information about the channel is available (direct channels as well
as crosstalk channels), making OSB only suitable with centralized
control in a Spectrum Management Center (SMC).

OSB uses Lagrange multipliers to enforce constraints that are
coupled over frequencies. However, finding the optimal Lagrange
multipliers can become complex when more than two users are con-
sidered. In [3] [4] a bisection method is proposed which has an expo-
nential complexity in the number of users. [5] avoids this exponential
complexity by using a subgradient search. However, the stepsize has
to be small to guarantee convergence, resulting in a large number
of evaluations. This paper develops some insights in the Lagrange
multipliers which lead to an efficient search algorithm. Simulations
show that the required number of Lagrange multiplier evaluations is
independent of the number of users and much smaller compared to
the number of evaluations of currently known search algorithms.

2. OPTIMAL SPECTRUM BALANCING

2.1. System Model

Most current DSL systems use Discrete Multi-Tone (DMT) modu-
lation. The available frequency band is divided in a number of par-
allel subchannels or tones. Each tone is capable of transmitting data
independently from other tones, and so the transmit power and the
number of bits can be assigned individually for each tone. This gives
a large flexibility in optimally shaping the transmit spectrum.

Transmission for a binder of N users can be modelled on each
tone k by

yk = Hkxk + zk k = 1 . . . K.

The vector xk = [x1
k, x2

k, . . . , xN
k ]T contains the transmitted signals

on tone k for all N users. [Hk]n,m = h
n,m
k is an N×N matrix con-

taining the channel transfer functions from transmitter m to receiver
n. The diagonal elements are the direct channels, the off-diagonal
elements are the crosstalk channels. zk = [z1

k, z2
k, . . . , zN

k ]T is the
vector of additive noise on tone k, containing thermal noise, alien
crosstalk, RFI,. . . The vector yk contains the received symbols.

We denote the transmit power as sn
k � ∆fE{|xn

k |
2}, the noise

power as σn
k � ∆fE{|zn

k |
2}. The vector containing the transmit

power of user n on all tones is sn � [sn
1 , sn

2 , . . . , sn
K ]T . The vec-

tor containing the transmit power of all users on tone k is sk �

[s1
k, s2

k, . . . , sN
k ]T .The DMT symbol rate is denoted as fs, the tone

spacing as ∆f .
It is assumed that each modem treats interference from other

modems as noise. When the number of interfering modems is large,
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the interference is well approximated by a Gaussian distribution.
Under this assumption the achievable bit loading of user n on tone
k, given the transmit spectra of all modems in the system, is

b
n
k � log2

 
1 +

1

Γ

|hn,n
k |2sn

kP
m�=n

|hn,m
k |2sm

k + σn
k

!
, (1)

where Γ denotes the SNR-gap to capacity, which is function of the
desired BER, the coding gain and noise margin. The data rate and
total power for user n are

R
n = fs

X
k

b
n
k and P

n =
X

k

s
n
k .

2.2. The Spectrum Management Problem

The spectrum management problem amounts to finding optimal trans-
mit spectra for a bundle of interfering DSL lines, following a certain
criterion and subject to a number of constraints.

First of all, there is a total power constraint P n,tot for each user.
This constraint ensures the user’s total power does not exceed the
maximum allowed total transmit power. On top of this constraint
there can be a spectral mask constraint s

n,mask
k for each tone to

guarantee electromagnetic compatibility with other systems. Note
that when using a spectrum management model where both these
constraints are present, one of them can be made inactive by merely
setting it such that the other constraint is more restrictive.

A second type of constraint is a rate constraint Rn,target for
each user. Typically service providers offer a number of profiles
and guarantee a certain Quality of Service. The rate constraint then
indicates a minimum data rate required by the user.

In rate adaptive mode, the spectrum management problem is to
maximize the sum of the data rates of the users. This will be done
by using all available power to load a maximum number of bits on
tones. The rate is thus limited by the total power and spectral mask
constraints.

maxs1,...,sN

PN

n=1
Rn

s. t. P n ≤ P n,tot n = 1 . . . N

0 ≤ sn
k ≤ s

n,mask
k n = 1 . . . N, k = 1 . . . K

Rn ≥ Rn,target n = 1 . . . N
(2)

For the power adaptive mode, a similar formulation can be used
[6]. Only now the sum of the total powers is minimized while the
same constraints hold.

2.3. Dual Decomposition

The rate adaptive optimization problem (2) is a non-convex problem
and therefore difficult to solve. Because the constraints are coupled
across the tones, all possible transmit spectra have to be searched
exhaustively to find the global optimum. This leads to an exponential
complexity in both the number of users and tones, namely O(BNK)
where B is the number of possibilities for the bit or power loading
for each tone and each user in case of discrete or continuous loading
respectively.

In [3] [4] it was shown that this complexity can be reduced by
using the method of dual decomposition, using Lagrange multipliers
to move constraints coupled over tones into the unconstrained part
of the optimization problem:

s
1,opt

, . . . , s
N,opt = argmax

s
1,...,sN

NX
n=1

ωnR
n+

NX
n=1

λn

`
P

n,tot−
KX

k=1

s
n
k

´
(3)

with 0 ≤ sn
k ≤ s

n,mask
k n = 1 . . . N, k = 1 . . . K

λn ≥ 0, ωn ≥ 0 n = 1 . . . N

This optimization problem is decoupled over the tones, thus the spec-
trum management problem can now be solved in a per-tone fashion.

Given ωn, λn, n = 1 . . . N this maximization problem can be
easily solved by performing an exhaustive search on each tone over
all possible bit or power loading combinations for the users. This
results in transmit spectra for all users. For random ωn

′s and λn
′s,

the power and rate constraints are generally not satisfied. By choos-
ing appropriate values for the Lagrange multipliers, these constraints
can be enforced.

From (3), it can be observed that the λn
′s influence the resulting

spectra. A larger λn for user n results in a larger penalty in the
cost function when power is allocated to sn

k . Therefore the λn
′s

can be viewed as setting a cost for power. The ωn
′s have a similar

intuitive interpretation. A larger ωn for user n results in an increased
importance attached to its rate. The larger ωn, the higher the rate
allocated to user n compared to other users.

3. LAGRANGE MULTIPLIER SEARCH ALGORITHM

We first investigate the case where N = 2. These results are then
extended to the multi-user case.

Given ω = (ω1, ω2) and λ = (λ1, λ2), the dual problem, de-
coupled over the tones, can be solved easily by performing an ex-
haustive search for each tone over all possible bit or power loading
combinations for the users. The optimal solution is then a bit and
power loading corresponding to total powers and data rates`

P
1,ω,λ

, R
1,ω,λ

, P
2,ω,λ

, R
2,ω,λ

´
The optimality of this solution implies that for this λ and ω there
exists no other bit or power loading giving a larger value to the La-
grangian (3). This then implies that for a weighted total power bud-
get λ1P

1 + λ2P
2 smaller than P ω,λ � λ1P

1,ω,λ + λ2P
2,ω,λ , it

is impossible to achieve a weighted rate sum (with weights ω1, ω2)
that is larger than Rω,λ � ω1R

1,ω,λ + ω2R
2,ω,λ . This is shown

graphically in the power plane of figure 1. Here
`
P 1,ω,λ , P 2,ω,λ

´
is the optimal power allocation for a given λ and ω. Every load-
ing corresponding to total powers in the marked triangle then has
a smaller weighted rate sum. If a λ is found such that

`
P 1,ω,λ =

P 1,tot, P 2,ω,λ = P 2,tot
´
, this solution satisfies the total power con-

straints and so has a weighted rate sum larger than every other possi-
ble loading in the marked rectangle. Thus the primal problem would
be solved if also the rate constraints are satisfied. Hence we would
like to tune λ and ω such that the total power constraints and rate
constraints are satisfied:
P 1,ω,λ = P 1,tot, P 2,ω,λ = P 2,tot, R1,ω,λ ≥ R1,target and
R2,ω,λ ≥ R2,target.

P 1P 1,tot

P 2

P 2,tot

(P 1,ω,λ, P 2,ω,λ)

λ1P
1 + λ2P

2

Fig. 1. 2-user power plane
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Starting from two optimal solutions (R1,ωA,λA , P 1,ωA,λA ,

R2,ωA,λA , P 2,ωA,λA) and (R1,ωB ,λB , P 1,ωB ,λB , R2,ωB ,λB ,

P 2,ωB ,λB ) corresponding to (ωA, λA) and (ωB , λB) respectively,
optimality for (ωA, λA) implies

ω1,AR1,ωB ,λB + ω2,AR2,ωB ,λB

−λ1,AP 1,ωB ,λB − λ2,AP 2,ωB ,λB

≤ ω1,AR1,ωA,λA + ω2,AR2,ωA,λA

−λ1,AP 1,ωA,λA − λ2,AP 2,ωA,λA

(4)

Optimality for (ωB , λB) implies

ω1,BR1,ωA,λA + ω2,BR2,ωA,λA

−λ1,BP 1,ωA,λA − λ2,BP 2,ωA,λA

≤ ω1,BR1,ωB ,λB + ω2,BR2,ωB ,λB

−λ1,BP 1,ωB ,λB − λ2,BP 2,ωB ,λB

(5)

Taking the sum of (4) and (5) results in

−
`
ω1,B − ω1,A

´| {z }
∆ω1

`
R

1,ωB ,λB − R
1,ωA,λA

´| {z }
∆R1

−
`
ω2,B − ω2,A

´| {z }
∆ω2

`
R

2,ωB ,λB − R
2,ωA,λA

´| {z }
∆R2

+
`
λ1,B − λ1,A

´| {z }
∆λ1

`
P

1,ωB ,λB − P
1,ωA,λA

´| {z }
∆P1

+
`
λ2,B − λ2,A

´| {z }
∆λ2

`
P

2,ωB ,λB − P
2,ωA,λA

´| {z }
∆P2

≤ 0

(6)

Relation (6) for two users can be extended straightforwardly to
the multi-user case:

ˆ
−(∆ω)T (∆λ)T

˜ » ∆R

∆P

–
≤ 0. (7)

λ = [λ1, . . . , λN ]T and ω = [ω1, . . . , ωN ]T are vectors containing
the λ’s and ω’s for the N users, P = [P 1, . . . , P N ]T and R =
[R1, . . . , RN ]T are vectors with the corresponding total powers and
data rates.

Two special cases can be derived from formula (7).

fixed ω (∆ω = 0) ⇒ (∆λ)T ∆P ≤ 0 (8)

fixed λ (∆λ = 0) ⇒ (∆ω)T ∆R ≥ 0 (9)

Relation (7) can be used to construct a simple procedure to find
the ω and λ that make the rate and total power constraints tight.
To simplify the graphical illustration of the procedure, we limit our-
selves to a procedure that only updates the λ Lagrange multipliers.
However, this procedure can be straightforwardly extended to also
include the update of the ω Lagrange multipliers by extending the
vectors as in formula (7).

In the power plane, formula (8) can be represented graphically
as two vectors with a non-positive inner product, as in figure 2(a).
When searching for the Lagrange multipliers that make the total
power constraint tight, we need to make changes to the λ such that
in the power plane we end up in the point where every user is at
maximum power. Because of the non-positive inner product of ∆λ

and ∆P, the ∆λ for a desired ∆P must be somewhere in the gray
half plane opposite to the ∆P vector.

This relation between ∆λ and ∆P can be used to steer the used
power towards the total power constraint. By changing the current λ

vector by a ∆λ in the opposite direction of the desired ∆P, formula
(8) guarantees that the step taken with ∆P will get the used power

(a)

∆λ

∆P

P 1

P 2

(P 1,tot, P 2,tot)

P
λ

(b) P 1

P 2

(P 1,tot, P 2,tot)

∆P

∆λ

Pλ

Fig. 2. 2-user power plane

closer to the power constraint (P 1,tot, P 2,tot), as long as ∆λ is not
too large. This is shown in figure 2(b), where the ∆λ brings Pλ to
the next point inside the shaded circle.

Mathematically this procedure can be captured in the following
update formula:

∆λ = −µ
`
P

tot−P
λ
´

⇒ λ
t+1 =

"
λ

t−µ
“
P

tot−
X

k

sk

”#+

.

(10)
By starting with a small µ, e.g. µ = 1 appears to work well in
practice, the used power makes a small step closer to the desired total
power. As long as the used power keeps getting closer to the desired
total power, µ can be increased, e.g. doubled. A trajectory of points
is then followed, each point with a total power closer to the power
constraint. At some point, a ∆λ will be selected taking the used
power further from the desired total power than the previous point
found along the trajectory. Then this last step has to be discarded
and a new trajectory is started using a new direction

`
Ptot − Pλ

´
.

This procedure is formally represented in algorithm 1. The outer
loop of this algorithm iterates over the trajectories while the inner
loop follows one of the trajectories. A possible evolution of the total
power using this strategy is shown in figure 3.

Algorithm 1 Multi-user λ search algorithm
while distance > tolerance do

λ = best λ so far
µ = 1
while distance ≤ previousDistance do

previousDistance = distance
µ = µ × 2
∆λ = −µ

`
P

tot − P
λ

´

[Pλ+∆λ , sn] = calculateLoading(λ + ∆λ)
(per-tone exhaustive search)

distance = ‖Ptot − P
λ+∆λ‖

end while
end while
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P 1P 1,tot

µ = 1

µ = 2

µ = 2

µ = 2

µ = 8

trajectory 2

trajectory 1

µ = 4

µ = 4

µ = 1

trajectory 3

µ = 1

µ = 2

µ = 1
P 2,tot

P 2

(λ1 = 0, λ2 = 0)

Fig. 3. Trajectories of total power in the power plane

4. SIMULATION RESULTS

The scenarios in this section use a line diameter of 0.5 mm (24 AWG),
the maximum transmit power is 20.4 dBm. The SNR gap Γ is set to
12.9 dB, corresponding to a target symbol error probability of 10−7,
coding gain of 3 dB and a noise margin of 6 dB. The tone spacing
∆f = 4.3125 kHz and the DMT symbol rate fs = 4 kHz [7].
All simulations start from initial λ Lagrange multipliers set to zero,
while the ω′s are fixed. It is seen that in all scenarios, the number of
λ-evaluations for algorithm 1 is roughly independent of the number
of users.

4.1. 2-user scenario

The performance of algorithm 1 is first compared to the bisection
[3] [4] and subgradient [5] search methods. The scenario for this
simulation is a 2-user downstream ADSL system with mixed CO
and RT deployment. The CO deployed line has a length of 5 km, the
RT deployed line is 3 km. The distance between the CO and RT is
4 km as shown in figure 4(a).

(a)
4000m

5000m

3000m

CO

RT

(b)

5000m

3000m

CO

RT

3500m

3000m

(c)

5000m

3000m

CO

3500m

RT

2500m

3000m

Fig. 4. Downstream ADSL scenarios

Depending on the point in the rate region, about 100 to 150
λ-evaluations are performed with algorithm 1. Because each λ-
evaluation requires a per-tone exhaustive search to determine the
loading on all tones, it is important to keep this number as small
as possible. For the bisection method of [3] [4] 400 to 600 λ-

evaluations are needed for this 2-user case. Because of its expo-
nential complexity in the number of users, this will get worse as the
number of users increases. For the subgradient method with ε = 1 as
suggested in [5], more than 20000 λ-evaluations are required. How-
ever, when the number of users increases, the number of evaluations
does not increase exponentially for the subgradient method.

The intuitive interpretation of the algorithm allows for the num-
ber of λ-evaluations to be further reduced. By starting a trajectory
with step size µ = 1, a number of λ-evaluations is wasted to increase
the µ to a magnitude for which the total power starts converging to-
wards the total power constraint. Instead, one could start a trajectory
with a µ inspired by the best µ of the previous trajectory, avoiding
unnecessary λ-evaluations. In this way the algorithm converges in
less than 40 λ-evaluations.

4.2. 3-user and 4-user scenarios

The performance of algorithm 1 was also tested on the 3 and 4-user
scenarios shown in figure 4(b) and 4(c) respectively. The 3-user
scenario required 115 λ-evaluations in 7 trajectories to converge,
the 4-user scenario 160 λ-evaluations in 10 trajectories. For the
bisection method, we estimate convergence would take on the or-
der of 8000 and 160000 λ-evaluations respectively. The subgradient
method of [5] with step size ε = 1 is expected to have similar per-
formance as in the 2-user case (more than 20000 λ-evaluations).

5. CONCLUSION

In this paper, the problem of finding the Lagrange multipliers for
OSB is analyzed. Insights into the relation between Lagrange multi-
pliers and constraints lead to a search procedure to find the Lagrange
multipliers that enforce the constraints. Here all Lagrange multipli-
ers can be updated in parallel, leading to a complexity which is found
to be roughly independent of the number of users.

Simulations show that for 2-, 3- and 4-user scenarios, 100-150
evaluations of the Lagrange multipliers are sufficient to enforce the
constraints. Moreover, the intuitive interpretation of the search algo-
rithm allows for more efficient updates of the step size. This results
in an even faster convergence, typically under 40 evaluations of the
Lagrange multipliers. Because of the efficient search procedure, the
remaining complexity of OSB is situated at the level of the per-tone
exhaustive search. This is an area of current research.
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