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ABSTRACT

In this paper, we deal with the capacity of Gaussian MIMO multi-
access fading channels when the channel knowledge available at the
receiver and the transmitters is erroneous. First, upper and lower
bounds on the multiaccess capacity region are presented when the
channel state information is estimated by means of a MMSE crite-
rion, and consequently, there exist some uncertainty on the channel
knowledge. Then, the difference between these bounds for the joint
mutual information is analyzed. A final expression for the ergodic
sum-capacity gap is obtained as a function of the number of users,
the quality of the channel estimates and the number of receive and
transmit antennas. Computer results show that adding more users or
transmit antennas reduces this gap in equal factor at high SNR.

1. INTRODUCTION

The capacity region of multiaccess (MAC) channels has been exten-
sively studied in the literature (see [1][2][3] and references therein).
Recently, an iterative water-filling algorithm has been found opti-
mal to compute the input covariance matrices in a Gaussian MIMO
MAC channel [1]. In fact, it has been shown this iterative water-
filling procedure converges after one iteration to only 1/2 nats per
user per output dimension away from the sum-capacity limit. On the
other hand, as analyzed in [3][4], the erroneous channel state infor-
mation (CSI) available in practical systems bounds the achievable
data rate in fading channels. In this paper, we first analyze the ca-
pacity region of Gaussian MIMO MAC fading channels with chan-
nel knowledge mismatch, establishing upper and lower bounds on
the individual and sum-capacity. Next, a simple limit for the gap
between the bounds of the ergodic sum-capacity is presented. This
allows us to state that this difference becomes negligible when the
total sum of transmit antennas is large.

2. ON CAPACITY OF MIMO GAUSSIAN MULTIACCESS
CHANNELS

A K-user Gaussian MIMO MAC channel can be modeled as

y =
K∑
i=1

Hixi + z,

where xi ∈ Cti×1 is the vector input signal transmitted by a user
i with ti transmit antennas, y ∈ Cr×1 is the output vector signal
at the receiver with r antennas, z ∈ Cr×1 is the noise vector and
Hi ∈ Cr×ti is the time-invariant channel between user i and the re-
ceiver. We assume bothHi and z are ergodic and stationary random
variables (r.v.), whose entries are independent, identically distributed
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(i.i.d.) and zero-mean circularly symmetric complex Gaussian (ZM-
CSCG) with unit variance [5], i.e., z and Hi ∼ CN (0, I), where I
denotes the identity matrix of proper size. The input signals are as-
sumed to be also i.i.d. with each user satisfying an individual power
constraint tr(Si) ≤ Pi, where Si = E[xixHi ] is the covariance ma-
trix of input xi. Both the input signals and the noise are uncorrelated.

Assuming that CSI at the receiver (CSIR) is perfectly acquired,
the capacity region for a K-user vector MAC channel is given by
maximizing

∑K
i=1 µiRi, with µi ≥ 0. When the goal is to maxi-

mize the sum rate, we impose that µ1 = . . . = µK = 1, and the
sum-capacity is achieved as follows [1]:

maximize log
∣∣∣I+ K∑

i=1

HiSiH
H
i

∣∣∣
subject to tr (Si) ≤ Pi i = 1, . . . ,K

Si ≥ 0 i = 1, . . . ,K

This objective function is concave because log | · | is concave and the
constraints are convex in the space of positive semidefinite matrices
[1]. Any point of the MAC capacity region can be achieved by suc-
cessive decoding. It is well-known [5] that for a single-user Gaussian
MIMO channel, the mutual information between the input vector and
the output vector is maximized when the input covariance matrix is
S = MŜMH , whereM are the right singular vectors of the chan-
nel matrix singular value decomposition (SVD), i.e, H = UΣMH .
In this way, the transmit directions align with the right eigenvectors
of the effective channel, decomposing the vector channel into a set
of parallel independent scalar subchannels. Then, the matrix Ŝ is a
diagonal matrix whose diagonal elements are computed via water-
filling [2]. In [1], it is shown that this idea of water-filling can be
generalized to the multiuser MAC case if the objetive is to maximize
the sum data rate. In essence, the iterative water-filling algorithm
can be described as [1]:

Initialization: Si = 0, i = 1, . . . ,K .
repeat

for i=1 toK do
Compute S′z = I+

∑K
j=1,j �=iHjSjH

H
j .

Calculate Si = arg maxS log |S′z +HiSHHi |.
Compute Eigenvalue Decomposition of S′z = Q∆Q

H .
Define Ĥi = ∆−1/2QHHi.
Compute SVD of Ĥi = FΣMH .
Water-filling to obtain the diagonal values of Ŝi from Σ.
Compute optimal Si =MŜiMH .

end for
until Convergence.
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Note that the above algorithm is equal to single-user capacity
maximization procedure, but considering that the modified noise co-
variance matrix S′z is the sum of the covariance matrices of the other
users received signals plus the noise covariance matrix.

3. MAC MUTUAL INFORMATION BOUNDS WITH
CHANNEL ESTIMATION ERROR

The iterative water-filling algorithm assumes perfect CSI at the re-
ceiver (CSIR) and the transmitter (CSIT). However, this assump-
tion is far from being possible. Let’s consider the situation where
the receiver carries out Minimum Mean Square Error (MMSE) es-
timation of the user channels. Particularly, consider for user i that
Hi = Ĥi + Ei, where Ĥi is the MMSE estimation of the channel
Hi available at the receiver and Ei is the corresponding channel es-
timation error. According to the orthogonality principle, Ĥi and Ei
are uncorrelated [4], and the entries of Ei are ZMCSCG r.v. with
variance σ2E,i = E[H

2
i,j ] − E[Ĥ2i,j ]. Henceforth, we will denote a

set of matrices as A = {Ai}Ki=1. For example, H = {Hi}Ki=1 de-
notes the set of actual user channels. Similarly, the set of transmitted
signals will be denoted as x = {xi}Ki=1, with corresponding set of
covariance matrices S = {Si}Ki=1.

To achieve sum-capacity requires Gaussian inputs with covari-
ance matrices obtained by an iterative water-filling algorithm [1]
and successive interference cancellation with maximum-likelihood
(ML) decoding at the receiver. In presence of channel uncertainty,
although decoding a user without error is possible, then cancelling
the complete interference term from that user is not possible, result-
ing in some additional error term [3]. In order to study the influence
of the channel estimation error on the capacity region of Gaussian
MIMO MAC fading channels, we derive upper and lower bounds on
the mutual information I(x;y

∣∣Ĥ), given the set of estimated chan-

nels Ĥ. Without loss of generality, we shall focus on a two-user
scenario in order to clarify the exposition.

3.1. Lower bounds on MAC mutual information

As developed in [3][4], to obtain a lower bound we expand the mu-
tual information in terms of differential entropies as follows:

I(y;x1
∣∣x2, Ĥ1, Ĥ2)=h(x1∣∣x2, Ĥ1, Ĥ2)− h(x1∣∣y,x2, Ĥ1, Ĥ2)

(1)

=h(x1)− h(x1 − α(y − Ĥ2x2)
∣∣(y − Ĥ2x2),x2, Ĥ2) (2)

≥h(x1)− h(x1 − α(y − Ĥ2x2)|x2), (3)

where we have used: in (2) the transmitted vector signals are inde-
pendent from each other and the corresponding channel, and adding
a constant does not modified differential entropy; in (3) condition-
ing always reduces the differential entropy [2, 3]. Choose α so that
α(y − Ĥ2x2) is the linear MMSE estimate of x1,

α�E
[
x1(y − Ĥ2x2)H

]
E
[
(y − Ĥ2x2)(y − Ĥ2x2)H

]−1
=S1Ĥ

H
1

(
Ĥ1S1Ĥ

H
1 +ΣE1x1 +ΣE2x2 + I

)−1
, (4)

where Σv denotes the covariance matrix of a vector v.

Assuming x1 is Gaussian distributed, even though the Gaussian
distribution may not be the capacity achieving distribution with CSI
mismatch, the first term in (2) is given by h(x1) = log

∣∣πeS1∣∣. On

the other hand, the second term is upper bounded by the entropy
of a Gaussian random variable whose covariance is Σm|x2 , where

m � x1 − α(y − Ĥ2x2). Employing (4) to compute the MSE
covariance matrix, Σm|x2 becomes

Σm|x2 = S1−S1ĤH1 (Ĥ1S1ĤH1 +ΣE1x1+σ2E,2‖x2‖2+I)−1Ĥ1S1,

therefore, h(m|x2) ≤ log
∣∣πeΣm|x2 ∣∣.

Since the entries of the channels matrices Hi are i.i.d. and lin-
ear MMSE estimation is carried out, the entries of the channel es-
timation error matrices Ei are also Gaussian i.i.d. random vari-
ables. Thus, for a particular channel estimation error matrix Ei,
E[Ei,mEj,n] = σ

2
E,iδi−j,m−n and ΣEixi = σ

2
E,iPiI [4]. Finally,

the lower bound of the MAC mutual information for user 1 is:

I
(
y;x1

∣∣x2, Ĥ1, Ĥ2)≥ log
∣∣∣∣∣I+ Ĥ1S1Ĥ

H
1

1 + σ2E,1P1 + σ
2
E,2‖x2‖2

∣∣∣∣∣
� Ilow

(
y;x1

∣∣x2, Ĥ1, Ĥ2) .
Equivalently, regardless the number of usersK, the lower bound

for the mutual information of user i and the joint mutual information
can be written as follows:

Ilow(y;xi
∣∣{x− xi}, Ĥ)=log

∣∣∣∣∣I+ ĤiSiĤ
H
i

1 + σ2E,iPi +
∑K

j=1
j �=i
σ2E,j‖xj‖2

∣∣∣∣∣
for i = 1, . . . ,K, (5)

and

Ilow(y;x|Ĥ)=log
∣∣∣∣∣I+

∑K
i=1 ĤiSiĤ

H
i

1 +
∑K
i=1 σ

2
E,iPi

∣∣∣∣∣. (6)

3.2. Upper bounds on MAC mutual information

In order to obtain an upper bound for the mutual information, we can
expand (1) in different manner:

I(y;x1|x2, Ĥ1, Ĥ2) = h(y|x2, Ĥ1, Ĥ2)− h(y|x1,x2, Ĥ1, Ĥ2)

= h(y
∣∣x2, Ĥ1, Ĥ2)− h(E1x1 + E2x2 + z∣∣x1,x2, Ĥ1, Ĥ2).

(7)
Since the Gaussian distribution maximizes the entropy over all

distributions with the same covariance [2], we obtain an upper bound
of the first term on the right hand side (RHS) as

h(y
∣∣x2, Ĥ1, Ĥ2) ≤ log ∣∣∣πeΣy|x2,Ĥ1,Ĥ2 ∣∣∣
= log

∣∣∣πe((1 + σ2E,1P1 + σ2E,2‖x2‖2)I+ Ĥ1S1ĤH1 ) ∣∣∣. (8)

Since all the input signals xi and the channel estimation errors
Ei are i.i.d. Gaussian r.v, the second term on the RHS in (7) becomes

h(E1x1+E2x2+z
∣∣x1,x2)=log ∣∣∣πe(1+σ2E,1‖x1‖2+σ2E,2‖x2‖2)I∣∣∣.

(9)
Similarly to lower bounds, combining (7)-(9), the upper bound

of the mutual information for user i and the joint mutual information
are given by (10) and (12), shown at the top of the next page.
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Iup(y;xi
∣∣{x− xi}, Ĥ) = log

∣∣∣∣∣ ĤiSiĤ
H
i + (1 + σ

2
E,iPi +

∑K
j=1
j �=i
σ2E,j‖xj‖2)I

1 +
∑K
i=1 σ

2
E,i‖xi‖2

∣∣∣∣∣ (10)

= Ilow(y;xi
∣∣{x− xi}, H̃) + log

∣∣∣∣∣ (1 + σ
2
E,iPi +

∑K
j=1
j �=i
σ2E,j‖xj‖2)I

1 +
∑K
i=1 σ

2
E,i‖xi‖2

∣∣∣∣∣ (11)

Iup

(
y;x
∣∣Ĥ) = log

∣∣∣∣∑Ki=1 ĤiSiĤHi +(1+∑Ki=1 σ2E,iPi)I1+
∑K
i=1 σ

2
E,i
‖xi‖2

∣∣∣∣ = Ilow

(
y;x
∣∣Ĥ)+ log ∣∣∣∣ (1+∑Ki=1 σ2E,iPi)I1+

∑K
i=1 σ

2
E,i
‖xi‖2

∣∣∣∣ (12)

4. APPROACHING ERGODIC SUM-CAPACITY BOUNDS

Traditionally, the Shannon capacity of a fading channel is referred in
terms of ergodic capacity. Ergodic capacity can be defined for a fad-
ing channel with a long-term delay constraint. Assuming an ergodic
channel, we can communicate at the rate defined by the average mu-
tual information with vanishing error assuming we use asymptoti-
cally optimal codewords that cover all channel states according to
the channel’s probability distributions [6]. In this sense, the average
mutual information is called ergodic capacity.

4.1. Difference between upper and lower bounds

In Section 3, the upper and lower bounds of mutual information of
Gaussian MIMO MAC channels have been derived in presence of
channel uncertainty. Particularly, in a K-user MAC channel, the
objective function can be to maximize the sum-data rate instead of
the rate of one particular user. As shown in (12), the upper bound
of the joint mutual information is related to its correponding lower
bound given by (6). The difference between the upper and lower
bounds of the ergodic sum-capacity is given by the expectation of
the last term in (12) as follows [4]:

∆ � E
[
Iup

(
y;x
∣∣Ĥ)− Ilow (y;x∣∣Ĥ)] (13)

= r · E
[
log

(
1 +
∑K
i=1 σ

2
E,iPi

1 +
∑K
i=1 σ

2
E,i‖xi‖2

)]
, (14)

where E[·] denotes the expectation operator. In [4], a limit for ∆
is obtained for the single user case (K = 1) for Gaussian inputs
in the high SNR regime and a large number of antennas. Here, a
simple approximation is adopted to compute the expected value of
the sum-capacity gap. To begin with, let us write∆ as follows:

∆= rE

[
log
(
1 +

K∑
i=1

σ2E,iPi

)
−
(
1 +

K∑
i=1

σ2E,i‖xi‖2
)]

= r
[
log
(
1 +

K∑
i=1

σ2E,iPi
)− E[ log (1 + K∑

i=1

σ2E,i‖xi‖2
)]]
.

(15)

Assuming gaussian input vectors, the norm ‖xi‖2 follows a chi-
square distribution χ2(ti) with 2ti degrees of freedom (d.f.) 1 and
E[‖xi‖2] ≤ Pi [4]. Therefore, χ2(ti) is scaled by a factor Pi/ti.

1Here, a chi-square r.v. χ2(m)with 2m d.f. is defined as 1
2

∑m
j=1 |xj |2,

which corresponds to the sum of the squared-magnitudes of m independent
ZMCSCG r.v. with unit variance [7]. The mean of χ2(m) is E[χ2(m)] =
m and its variance is var[χ2(m)] = 2m.

Defining ξ � 1 +∑K
k=1 σ

2
E,i‖xi‖2, observe that ξ is the weighted

sum ofK independent chi-square r.v. with different d.f.. Employing
a classical technique in statistics [8], ξ can be approximated by a
single chi-square r.v. with l d.f. and a proper scaling factor α/l,

ξ = 1 +
K∑
k=1

σ2E,i
Pi

ti
χ2(ti) ≈ α

l
χ2(l).

The parameters α and l should be chosen such that both terms
have identical mean and variance. This is given by

α = 1 +
K∑
k=1

σ2E,iPi,

α2

l
=

K∑
k=1

σ4E,i
P 2i
ti
,

and, therefore, the number of d.f. is

l =
(1 +

∑K
k=1 σ

2
E,iPi)

2∑K
k=1 σ

4
E,i

P2
i
ti

. (16)

Note that l is rounded to the nearest integer if necessary. Following
Lemma 1 in [4], the expected logarithm of α

l
χ2(l) is given by [7]:

E
[
log
(α
l
χ2(l)

)]
= log

α

l
+

(
l−1∑
i=1

1

i
− γ
)
,

where γ is the Euler’s constant. Therefore,∆ becomes

∆ = r
[
log l + γ −

l−1∑
i=1

1

i

]
. (17)

In the limit of a large value of l,∆ is shown to achieve [4]

lim
l→∞

∆ =
r

2l
. (18)

Clearly, (18) is similar to the limit obtained in [4], but substitut-
ing the number of single-user transmit antennas t into the parameter
l. Observe that when channel knowledge is perfect and σ2E,i=0, l
tends to∞ and logically∆ reduces to zero.

In order to fairly compare ergodic sum-capacities of scenarios
with different number of users K, assume that users are provided
with equal number of transmit antennas ti = t and a total amount
of power must be shared out between all users so that the individ-
ual power constraints are Pi = P/K for i = 1, . . . ,K . Usually,
accurate power control algorithms are employed at the receiver so
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Fig. 1. Lower (-.-) and upper (-) bounds of joint mutual information (r=4). (a) ti = t = 2, (b)K=4. The received SNR is P/K.

that user signals impinge with similar SNRs. Operating under these
assumptions, if channel MMSE estimation is carried out, it is reason-
able to assume that the error variances are identical, i.e., σ2E,i = σ

2
E

for i = 1, . . . ,K . Therefore, the parameter l is given by

l =
(1 +

∑K
k=1 σ

2
E,iPi)

2∑K
k=1 σ

4
E,i

P2
i
ti

=
(1 + σ2EP )

2

σ4E
P2

Kt

. (19)

In the high SNR regime, l limits to limP→∞ l = Kt, and the gap
between the upper and lower bounds achieves

lim
l→∞

lim
P→∞

∆ =
r

2Kt
. (20)

Thus, in this simple scenario with identical user parameters, ∆
is proportional to the quotient r/t, and it is inversely proportional to
K at the high SNR regime. Similar to [4], this result can be inter-
preted as if one user would have the total sum of transmit antennas
Kt. Observe that the difference between the lower and upper bound
of ergodic sum-rate decreases with increasing number of usersK or
transmit antennas t. This relationship between the number of trans-
mit antennas and the number of users is in agreement with the results
shown in [9] for the ergodic sum-capacity in MAC channels with no
CSIT available at high SNRs.

In Figure 1 the lower and upper bounds of the joint mutual in-
formation are depicted for r = 4 as a function of the total power
constraint, the channel estimation qualities and the number of users.
As illustrated, increasing the number of users from K=2 to K=8
(left) or the number of transmit antennas from ti=2 to ti=8 (right)
reduces the gap between the bounds. Note that the gap is relatively
small for any SNR values. Obviously, more channel estimation er-
ror always decreases the feasible sum-data rate. On the other hand,
notice that increasing the number of transmit antennas for fixed num-
ber of receive antennas (right) does not have the same effect in terms
of absolute sum-data rate as adding users (left), particularly for low
channel estimation errors. An scenario with more users achieves
larger values of sum-data rate thanks to the multiuser diversity gain
[9]. The number of available signalling degrees of freedom (sub-
channels) depends on the number of receive antennas. These sub-
channels must be distributed between the users according to their
channel qualities, with a maximum number of subchannels per user
which is limited to the corresponding number of transmit antennas.
Finally, the figure illustrates a linear increase in the joint mutual in-
formation in ideal scenarios without channel estimation error, but is
bounded with channel mismatch.

5. CONCLUSIONS

In this work, the lower and upper bounds of Gaussian MIMO MAC
fading channels have been established in presence of channel mis-
match at the receiver and the transmitters. Then, a further analysis
on the difference between the bounds of the joint mutual informa-
tion has been carried out. As a result, we introduce a closed expres-
sion for this gap, which states that the bounds tend to overlap for
larger number of users or transmit antennas at high SNR. Simula-
tion results demonstrate that the multiuser diversity gain obtained by
adding more users is still beneficial in terms of absolute sum-data
rate, specially when the channel estimation quality is good enough.
Future work should address this CSI mismatch analysis on outage
capacity.
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