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ABSTRACT

For MIMO systems operating over frequency-selective channels,
we establish the Cramer-Rao Bound (CRB) for the CFO and chan-
nel parameters. We derive training sequences so that the resulting
CRB on the CFO is independent of the channel. We show that
these designs lead to simple implementation of the maximum like-
lihood estimators of the CFO and channel parameters, Simulation
results illustrate the performance of the proposed designs.

1. INTRODUCTION

Reliable coherent communication systems require accurate syn-
chronization (timing and frequency) and channel estimation, par-
ticularly when the data rate or bandwidth is large, and in multiple
antenna systems. Blind estimation techniques have been proposed
in order to save bandwidth; however, the tradeoff with power and
complexity is ambiguous. Practical systems typically use some
form of training which may be prepended, appended, or embed-
ded in the data packet. Training typically leads to low complexity
receivers and good performance at the expense of a typically small
increase in bandwidth [1]-[4].

Devoting resources to the pilots improves channel estimation,
but the tradeoff is with degraded BER (total fixed power) or re-
duced rate (fixed bandwidth). Optimal training for the CFO-free
frequency-selective MIMO channel has been recently addressed
by many authors e.g., [6]-[9]. In the presence of CFO, training de-
sign has received relatively little attention. Single antenna systems
were considered in [4] using the worst-case asymptotic Cramér-
Rao Bounds (CRB), leading to a white Gaussian preamble. Here,
we use the exact CRB as a metric for training design, an idea also
considered in [10] for CFO estimation, and in [8] for frequency-
selective channel estimation. We tackle the challenging problem
of training design for both CFO and channel estimation. Our find-
ings are novel in both single and multiple antenna scenarios. Our
preamble designs lead to low complexity estimators, and are ap-
plicable to both serial and block (either cyclic-prefixed or zero-
padded) transmissions. Proofs of the results established in this
paper can be found in [12].

Notation: Superscripts H , T and † denote Hermitian, trans-
pose and pseudo-inverse operators. The trace, statistical expecta-
tion and the Kronecker product are denoted by Tr {·}, E {·} and
⊗ respectively. The L2 norm of a vector a is denoted by ‖a‖2. IN

denotes the (N ×N ) identity matrix and 1Q denotes the (Q×Q)
matrix of ones. Finally, diag (a1, ..., aN ) is the (N ×N) diagonal
matrix whose nth diagonal entry is an. Subscripts may be dropped
if there is no ambiguity.

2. SIGNAL MODEL

We consider a MIMO system with Mt transmit and Mr receive an-
tennas. The baud-sampled discrete-time channel impulse response
(CIR) between the ith transmit and the jth receive antennas is de-
noted by hi,j = [hi,j(0), ..., hi,j(L − 1)]T where L is an up-
per bound on the length of the longest CIR, We assume that all
the transmit (resp. receive) antennas are driven by the same local
oscillator (as in a collocated system). This implies that a single
CFO characterizes the frequency mismatch. In order to estimate
the CFO and the CIRs, the transmit antennas send possibly dif-
ferent N + L − 1-point preambles1, ai(−L + 1) · · · ai(N − 1),
i = 1 · · ·Mt, simultaneously. The received signal block at the jth
receive antenna is modeled as

xj = Γ(ω0)

Mt�
i=1

Aihi,j + wj , j = 1, 2, ..., Mr (1)

where xj = [xj(0)...xj(N −1)]T , wj = [wj(0)...wj(N −1)]T ,
ω0 is the normalized angular CFO, with

Γ(ω0) = diag
�
1, ejω0 , ..., ejω0(N−1)

�
,

Ai(k, �) = ai(k − �), k = 0, ..., N − 1, � = 0, ..., L − 1 .

We assume the wj’s to be mutually independent circularly sym-
metric complex white Gaussian noise vectors, with variance σ2.
We also assume that no a priori information about the statistics of
the channels is available.

Let x = [xT
1 · · ·xT

Mr
]T , A = [A1...AMt ], hj = [hT

1,j ...h
T
Mt,j ]

T

and h = [hT
1 · · ·hT

Mr
]T . The signal model in eq. (1) can then be

rewritten as

xj = Γ(ωo)Ahj + wj , (2)

x = [IMr ⊗ Γ(ω0)A]h + w , (3)

where the vector w is defined similar to x.

3. CRAMÉR-RAO BOUNDS

In the CFO-free case, ωo = 0, and Γ(ωo) = IN . It is easy to show
that a necessary and sufficient condition for channel identifiability
is that A have full column rank. The CRB for h is obtained as

CRB(h)|no−CFO = σ2IMr ⊗ (AHA)−1 . (4)

The CRBs for the hj ’s, the channels to receiver j, are identical and
mutually decoupled. For the same receive antenna, the CRBs for

1We consider preambles rather than midambles or postfixes for simplic-
ity.
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the CIRs associated with different transmit antennas are in general
coupled; they can be decoupled if the training sequences satisfy
AH

k A� = 0 if k �= �. Optimal design of the training sequences is
investigated in Section 4.

In the general case where the received signals are corrupted by
CFO, the CRB for ω0 and h are obtained as (A is assumed tall in
this case)

CRB(ω0) =
σ2

2

�
hH(IMr ⊗ AHDΠ⊥

ADA)h
�−1

, (5)

CRB(h) = σ2IMr ⊗ (AHA)−1 +

CRB(ω0)(IMr ⊗ C)hhH(IMr ⊗CH) (6)

where D = diag (0, 1, · · ·N − 1)

Π⊥
A = I −A(AHA)−1AH ,

ξ = hH(IMr ⊗ AHDΠ⊥
ADA)h ,

and C = (AHA)−1AHDA .

Notice that the CRB for h is equal to that in the CFO-free case
plus an extra term which takes into account the effect of CFO
estimation error. In the case of single antenna systems, the pre-
ceding CRB expressions reduce to the ones given in [4]. In con-
trast with the CFO-free case, the CRBs for different hj’s are now
coupled. Further, the CRBs for the CFO and the CIRs are now
channel-dependent. Next, we design training sequences which
make the CRB of ω0 channel-zeros-independent, i.e., for a fixed
‖h‖2, CRB(ω0) is independent of the channel realizations (or
channel zeros).

4. TRAINING SEQUENCE DESIGN

In the absence of a priori information about the channels, the total
transmit energy allocated to training, P , is split equally between
the transmit antennas, i.e.,

(C0) ‖a1‖2
2 = · · · ‖aMt‖2

2 =
P
Mt

where ‖ai‖2
2 =

�N−1
n=−L+1 |ai(n)|2. If the Peak-to-Average Power

Ratio (PAPR) is an issue, the more stringent constant-modulus
(CM) Condition (C1) will be imposed:

(C1) |ai(n)|2 =
P

Mt(N + L − 1)
,

for n = −L + 1, · · · , N − 1; i = 1 · · ·Mt. The CM property
is desirable if nonlinear distortions due to power amplifiers are of
concern. Since (C0) is less restrictive than (C1), the former will
lead to better estimation performance at the expense of a larger
PAPR.

From eqs. (5) and (6) we note that the training sequences that
minimize CRB(ω0) and Tr {CRB(h)} are channel-dependent.
To circumvent this problem, the asymptotic CRB and the worst-
channel scenario were used in [4]. Here, we take a different ap-
proach. We investigate training designs that make CRB(ω0) channel-
independent, i.e., independent of the channel zeros. Since we can-
not make both CRB(ω0) and Tr {CRB(h)} channel-independent,
we derive a channel-independent upper bound on Tr {CRB(h)}.
Although the channel-independent CRBs are not the minimum
CRBs, which are channel-dependent, they have the nice property

of being constant for all channel realizations provided the norm of
h is constant.

CRB(ω0) in eq. (5) is channel-independent if the training
sequences satisfy

AHDΠ⊥
ADA = ρI (7)

where ρ is a positive real scalar. Such sequences will be referred to
as Channel-Independent Performance Training (CIPT) sequences.
Finding all CIPT sequences seems to be a difficult task. Here, we
give examples of such sequences.

Consider sequences of size N + L − 1 where N = LMtQ
with Q(≥ 1) being an integer, which have a cyclic prefix structure,
i.e., ai(−n) = ai(N −n) for n = 1 · · ·L− 1, and such that their
N -point DFTs, i.e., DFT of [ai(0) · · · ai(N − 1)]T , satisfy

ãi(m) =

�
κPN

MtL
ejϕi(m)

L−1�
k=0

δ(m + (i − 1)Q − kMtQ), (8)

for m = 0 · · ·N − 1 and i = 1, · · · , Mt, where the ϕi(m)’s are
arbitrary phase values and κ = (Mt/P)

�N−1
n=0 |ai(n)|2. Note

that κ = 1 under (C0). In the frequency-domain, each such train-
ing sequence is a L-tooth comb, with a spacing of MtQ bins; the
combs for adjacent transmitters are offset by Q frequency bins (see
[6] for related designs). Under (C0), κ = 1, ϕi(m) = φi, ∀m,
where the φi’s are arbitrary phases. This implies that under (C0),
the time-domain training sequence consists of an impulse train,
spaced L apart, amplitude modulating a different tone. For the
sequences in (8), AHA = κP/MtI, and

A(AHA)−1AH =
1

Q
1Q ⊗ IN/Q . (9)

We can show that the above sequences satisfy the condition in
eq. (7) with ρ given by

ρ =
κPN2

�
1 − (MtL/N)2

�
12Mt

.

Next, we use eq. (6) to obtain

Tr {CRB(h)} =
σ2

2

�
2MrTr

�
(AHA)−1

�

+ ξ−1[hH(IMr ⊗ CHC)h]
�

(10)

where C is given in eq. (7). For the CIPT design in eq. (8), we
have that ξ = ρ‖h‖2 and (using eq. (9))

Tr {CRB(h)} =
LM2

t Mrσ
2

2κP
+

6σ2Mt

κPN2 [1 − (MtL/N)2]
(11)

× hH(IMr ⊗ ĀHD(Q−11Q ⊗ IN/Q)DĀ)h

‖h‖2

where Ā = [κP/Mt]
−1/2A; so ĀHĀ = I. A channel-independent

upper bound is given by

Tr {CRB(h)} <
LM2

t Mrσ
2

κP +
6σ2Mtλmax

κPN2 [1 − (MtL/N)2]
(12)

where λmax is the maximum eigenvalue of ĀHD(Q−11Q⊗IN/Q)DĀ.
The upper bound is equal to Tr {CRB(h)} in the CFO-free case
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plus an extra term which depends on how the ϕi(m)’s in eq. (8) are
chosen. One can also design these angles so that the upper bound
is minimized. However, maximum energy efficiency (resp. unit
PAPR) imposes constraints on the ϕi(m)’s. Note that the above
upper bound is strictly channel-independent: it does not even de-
pend on the norm of h. We summarize these results next:

Proposition 1 If N = LMtQ and the training sequences are
designed as in eq. (8), then the CRB for ω0 is channel-independent
and is given by

CRB(ω0) =
6σ2

κP‖h‖2N2 [1 − (MtL/N)2]
(13)

where κ = (Mt/P)
�N−1

n=0 |ai(n)|2. Further, the trace of CRB(h)
is upper bounded by the channel-independent quantity in eq. (12).

When N >> L, the above channel-independent CRB for ω0

is identical to the asymptotic CRB developed in [4]. Further, in
the case of single antenna systems, periodic training was used for
CFO estimation in [1]; but the CRB derived there was channel-
dependent because the SNR was channel-dependent. Finally for
the interesting case where N = 2LMt (see Sec 5), eq. (13) be-
comes proportional to N−2, CRB(ω0) = 8σ2

κP‖h‖2N2 .

5. MAXIMUM LIKELIHOOD ESTIMATION

The ML estimate of ω0 and h are found to be

ω̂0 = arg min
ω

Mr�
j=1

‖xH
j Γ(ω)Π⊥

AΓ(−ω)xj‖2 (14)

ĥj = A†Γ(−ω̂0)xj . (15)

When N = MtLQ, and the training sequences satisfy the CIPT
design condition in eq. (8), we obtain

Π⊥
A = I − 1

Q
1Q ⊗ IN/Q .

The ML estimates greatly simplify to

ω̂0 = arg max
ω

N/(MtL)−1�
m=1

R
�
r(mMtL)e−jmMtLω

�
(16)

ĥi,j =
Mt

κPAH
i Γ(−ω̂0)xj (17)

where R [x] indicates the real part of x and r(τ ) is the correlation

r(τ ) =

Mr�
j=1

N−τ−1�
k=0

x∗
j (k)xj(k + τ ) .

In the case of single antenna systems, the ML estimate of ω0 is
identical to the repetitive-slot-based non-linear least squares esti-
mate in [1, 3, 11]. This holds true only for sequences satisfying
eq. (8), i.e., if the number of repetitive slots in the training se-
quence after removing the cyclic-prefix is not equal to N/L, then
the repetitive-slot-based nonlinear least squares estimates are not
ML. The acquisition range of the above ML estimator of ω0 is
[−π/MtL, π/MtL), which decreases with Mt and L. Thus, for
large Mt or/and L, the proposed training design is viable for fine
CFO estimation only, i.e., for small values of ω0.

If N = 2MtL, the ML estimator in eq (16) is given in closed-
form as

ω̂0 =
1

MtL
arg{r(MtL)} . (18)

In the case of single antenna systems, this estimator reduces to the
one proposed in [2]. If N > 2MtL, the MLE cannot be written in
closed-form.

The mean-square errors (MSE’s) of the ML estimates asymp-
totically (i.e., large N ) achieve the CRB. In the CFO-free scenario,
the ML estimator of h is obtained from eq. (15) after replacing ω̂0

by zero. In this case, the MSE of the ML estimate achieves the
CRB for any number of samples N .

Finally, if we use the CIPT training design in eq. (8) with
ϕi(m) = 0, m = 0, · · · , N − 1 and i = 1 · · ·Mt, which satisfies
(C0), the MLE simplifies further to

ĥi,j(�) =
Mt

κP
N/L−1�

k=0

xj(� + kL)e
−j2π(i−1) �+kL

LMt e−jω̂0(�+kL)

(19)

6. SIMULATION RESULTS

Consider a system with 1 receive and 2 transmit antennas. The
channels are assumed independent with L = 4 taps each. The
hi(�)’s are uncorrelated zero-mean Gaussian random variable with
exponential power delay profile E

�|hi(�)|2
�

= C exp(−0.2�)

where scaling factor C ensures that
�L−1

�=0 E
�|hi(�)|2

�
= 1.

The length of the training sequence is set to 23, i.e., N = 16.
In each Monte-Carlo simulation, a new CFO is randomly drawn
from the interval [−π/10, π/10] and a new channel realization is
generated. Two types of training sequences are used to estimate
the CFO and CIR: i) independent PN sequences, as recommended
in [4] for single-input systems, and ii) our CIPT sequence design
in eq. (8). Figure 1 displays the CRBs for ω0 for different real-
izations of the normalized channel, i.e., with ‖h‖2 kept constant.
It can be seen that for the CIPT design CRB(ω0) is the same for
all realizations of the normalized channel, but it can significantly
vary in the case of PN-based training design. In what follows, we
do not normalize the channels. Figures 2-3 display the MSE of the
ML CFO and channel estimates vs. the average SNR P

Nσ2 . These
MSEs are obtained using 500 Monte-Carlo runs. For the CIPT de-
sign, the closed-form CFO estimator in eq. (18) was used since
N = 2MtL, and the channel coefficients were estimated using
the simple expression in eq. (19). For the PN design, a gradient-
type numerical optimization was used to estimate ω0. The optimal
CIPT design offers a 3 dB SNR gain over the PN training design.

Figures 2-3 suggest that the proposed CIPT design not only
leads to simple estimation algorithms but also provides a better
averaged (over the channel realizations) CFO and channel esti-
mation performance than does the PN training design. Further-
more, Figure 3 shows that the channel-independent upper bound
on CRB(h) given in eq. (12) is quite tight.

Figures 4-5 display performance vs. N for a fixed SNR: the
CIPT design outperforms the PN-based design for all values of N .
The gap in performance decreases when N increases.
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