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ABSTRACT

This paper considers the robust design of a linear transceiver with

imperfect channel state information (CSI) at the transmitter of a

MIMO link. The framework embraces the design problem when

CSI at the transmitter consists of the channel mean and covariance

matrix or, equivalently, the channel estimate and the estimation er-

ror covariance matrix. The design of the linear MIMO transceiver

is based on a general cost function covering several well known per-

formance criteria. In particular, two families are considered in de-

tail: Schur-convex and Schur-concave functions. Approximations

are used in the low SNR and high SNR regimes separately to obtain

simple optimization problems that can be readily solved. Numerical

examples show gains compared to other suboptimal methods.

1. INTRODUCTION

The design of a MIMO communication system depends on the de-

gree of knowledge of the Channel State Information (CSI). For a

given communication channel, the best spectral efficiency and/or

performance is obviously achieved when perfect CSI is available at

both sides of the link. Optimal linear transceiver design has been

extensively studied in this case [1, 2]. In practical communication

systems, imperfect CSI may arise from a variety of sources such as

channel estimation errors, quantization of the channel estimate in

the feedback channel, outdated channel estimates, etc [3]. These ef-

fects are of paramount importance in practical implementations. By

modeling such imperfections and taking them into account in the

transceiver design, a robust communication system is obtained.

While imperfection of CSI at the receiver (CSIR) can be as-

sumed to be sufficiently small in many cases, CSI at the transmitter

(CSIT) will be far from perfect in many realistic situations. Hence,

it is reasonable to assume perfect CSIR and imperfect CSIT, as is

considered in this paper.

There are different ways to design a system that is robust to im-

perfect CSIT. In [3, 4], worst-case designs are considered. This guar-

antees a certain system performance for any possible channel suffi-

ciently close to the estimated one. This approach leads to conserv-

ative designs, which may translate into a significant increase of the

required transmit power. Alternatively, the CSI uncertainty can be

modeled statistically. This guarantees a certain system performance

averaged over the channels that could have caused the current esti-

mated channel [5, 6, 7]. The latter statistical modeling approach is

used in the sequel.

For the stochastic approach, different types and amount of CSIT

determine the transceiver design. Previous work has considered chan-

nel mean CSIT or channel covariance CSIT. The case of mean CSIT

is addressed in [8] for minimizing the average MSE, and in [9] (ML

receiver) for maximizing the mutual information by beamforming.

The case when the channel covariance is the only CSIT is addressed

in [10] (ML receiver) for minimizing an upper bound of the average

pairwise error probability (PEP) by eigenbeamforming, and in [9]

(ML receiver) for maximizing the mutual information by beamform-

ing. When both mean and covariance CSIT are available, a robust

design is more involved. The problem of minimizing the average

MSE and maximizing the average SNR in MISO channels is consid-

ered in [5], and in [6] for minimizing the sum MSE and minimizing

an upper bound of PEP with an equivalent channel based on con-

ditional channel mean and linear transceivers. In [7] the problem

of minimizing average MSE with transmitters diagonalizing the co-

variance matrix is addressed. Linear precoders used with orthogonal

STBC to minimize an upper bound of PEP are discussed in [11].

Herein, we will consider robust linear transceiver design with

imperfect CSIT and perfect CSIR for MIMO systems. The frame-

work proposed embraces the cases of mean and/or covariance feed-

back CSIT. Two very general classes of cost functions, Schur-convex

and Schur-concave functions [12], are considered instead of choos-

ing a specific criterion.

The following notations are used in the paper. Uppercase and

lowercase boldface denote matrices and vectors respectively. The

operators (·)∗ and ⊗ are Hermitian transpose and Kronecker product

respectively. The operator d [·] is a vector consisting of the diagonal

elements of the matrix argument, and diag [·] is the diagonal matrix

with the vector argument as diagonal elements.

2. SYSTEM MODEL

Consider a narrowband MIMO channel with n transmit and m re-

ceive antennas. The corresponding discrete-time signal model can

be written as

y = Hs + n (1)

where the transmitted signal vector is s ∈ C
n×1, the channel ma-

trix is H ∈ C
m×n, the received signal vector is y ∈ C

m×1, and

the noise vector, n ∈ C
m×1, is zero-mean circular symmetric com-

plex Gaussian interference-plus-noise with arbitrary covariance ma-

trix Rn, i.e. n ∼ CN (0,Rn), which is assumed to be perfectly

known at both sides of the link.

Consider the use of a linear precoder B ∈ C
n×l at the transmit-

ter and a linear equalizer A ∈ C
m×l at the receiver:

s = Bx, x̂ = A∗y (2)

where the data symbol vector, x ∈ C
l×1, is zero-mean with unit-

energy uncorrelated symbols, i.e., E [xx∗] = I.
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The total average transmitted power is PT = E [s∗s] = tr [BB∗].
It is also convenient to define the mean square error (MSE) matrix

as:

E(A,B) � E [(x̂ − x)(x̂ − x)∗]
= (A∗HB − I)(B∗H∗A − I) + A∗RnA

(3)

and its diagonal elements d [E] coincide with the MSEs.

3. PROBLEM FORMULATION

3.1. Robust Design Formulation with Imperfect CSI

To be general, we will consider that the performance of the MIMO

system is measured by an arbitrary function F0 of the MSEs, SINRs,

or BERs of the established substreams. Interestingly, as proved in

[13], BER and SINR can both be re-mapped to functions of MSE

under certain mild conditions. Therefore, it suffices to consider func-

tions of the MSEs, F0 (d [E]), as a performance measure.

The main purpose of this paper is to optimize the linear trans-

ceiver (A,B) including robustness against channel estimation er-

rors. We take a stochastic design method following a Bayesian phi-

losophy that considers the distribution function of the actual channel

conditioned on the obtained estimation.

The following model is used to describe channel uncertainty:

Ĥ = H + H∆ (4)

where H is the actual channel, Ĥ is the channel estimate and H∆

is the estimation error ( H and H∆ are modeled as jointly Gaussian

distributed [14]). As a consequence, the average performance as a

function of MSEs given the channel estimate Ĥ is

EH|Ĥ[F0(d [E])] = EH∆ [F0(d [E])]. (5)

The robust problem formulation that minimizes the average cost

function given the channel estimate can therefore be formulated as

min
A,B

EH∆ [F0 (d [E(A,B)])]

s.t. tr [BB∗] ≤ PT .
(6)

Of course, obtaining the expected value of any arbitrary function F0

in a convenient form is in general not possible. We should then focus

on some simple choices such as when F0 is linear and interchange

the order of expectation:

min
A,B

F0 (d [E [E(A,B)]])

s.t. tr [BB∗] ≤ PT .
(7)

If the function F0 is not linear, we can linearize the function by a

Taylor expansion around the point E [d [E]] resulting a similar cost

function depending on E [E] and its higher moments:

E [F0 (d [E])] = F0(d [E [E]]) + o
� ‖d [E] − E [d [E]] ‖2 � .

3.2. Mean and Covariance CSIT

If only the channel covariance is available as CSIT, weighted space-

time block coding may be applied [14, 15]. Mean feedback (possibly

with covariance feedback) CSIT is a more relevant situation where

the linear transceiver signal model may be adopted.

We model the mean and covariance CSIT as

H ∼ CN (Ĥ,R∆ ⊗ Im) (8)

where Ĥ is the channel estimate (or equivalently the channel mean

H̄) and R∆ is the channel estimation error covariance (or equiva-

lently the channel covariance matrix). The case of only mean CSIT

is implicitly considered here if R∆ is an identity matrix.

4. ROBUST DESIGN WITH IMPERFECT CSIT

When the receiver has perfect knowledge of the channel state, it can

always optimize the linear equalizer A for each channel realization

H. The linear MMSE receiver A minimizing the MSE matrix in (3)

is the well known Wiener filter (c.f. [2])

A = (HBB∗H∗ + Rn)
−1

HB (9)

and without loss of generality we assume Rn = I, so the resulting

MMSE matrix is

E(B) = (I + B∗H∗HB)−1 = (I + W)−1
(10)

where W � B∗H∗HB. Thus, the robust design problem (7) can

be rewritten as
min
B

F0 (d [E [E(B)]])

s.t. tr [BB∗] ≤ PT .
(11)

In order to solve this optimization problem with respect to B, we

need a closed-form expression for E [E(B)], which is very difficult

to obtain in general. Expressing E(B) in terms of W, the problem

can be more conveniently rewritten as

min
B

F0

�
d � EW � (I + W)−1 � � �

s.t. tr [BB∗] ≤ PT .
(12)

which requires the distribution of W. Unfortunately W follows a

non-central complex Wishart distribution [16] that is very involved

in computation:

W ∼ CW l(m,B∗R∆B, (B∗R∆B)−1B∗Ĥ∗ĤB). (13)

The exact distribution of the non-central Wishart distribution is de-

rived in [17] in terms of Zonal polynomials and in [18] in terms of

generalized Laguerre polynomials. Both of them are too compli-

cated to be applicable in practice. A very convenient alternative is to

approximate the above non-central Wishart distribution with a cen-

tral distribution (which is much easier to manipulate) in terms of a

moment approximation [19], so the non-central Wishart distribution

in (13) can be approximated as:

W ∼ CW l (m,B∗ΨHB) , ΨH = (R∆ + Ĥ∗Ĥ/m) (14)

which gives a second order moment accurate to the order of 1/m.

4.1. Low SNR Formulation

With the above CSI modeling and non-central Wishart approxima-

tion, the robust design problem (12), and eventually the original

problem (7), can be approximated and solved efficiently. Under low

SNR conditions1, results are presented in the companion paper [20].

Result 1: When the cost function F0 is Schur-concave, the spe-

cific structure of the optimal transmitter B actually diagonalizes the

equivalent channel covariance matrix ΨH . The whole optimization

problem is reduced to a power loading problem, which depends on

the specific cost function.

Result 2: When the cost function F0 is Schur-convex, the opti-

mal transmitter B is independent of the choice of the function F0.

The optimal B does not fully diagonalize ΨH , but produces equal

diagonal elements of E [E(B)]. The optimization of B is a convex

quadratic program (QP) and can be solved very efficiently.

1It is convenient to define SNR vector as SNR = d [B∗ΨHB]. By low
SNR, we mean max SNR < 1/(2m + l).
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4.2. High SNR Formulation

Under high SNR conditions2, the robust design problem (7) is solved

by the following theorem. Due to the limited space, please refer to

[21] for a detailed proof, which is based on majorization theory [12].

Lemma 1 The expected value of the MMSE matrix in (10), where
W is Wishart-distributed as in (14), can be approximated (assuming
n ≥ l and m > l + 1) as

E [E(B)] = E � (I + W)−1 �
≈ (B∗ΨHB)−1

m − l

�
I − (m − l)(B∗ΨHB)−1 + tr � (B∗ΨHB)−1 �

(m − l)2 − 1 � .

Theorem 1 Let F0 : R
l �→ R be a linear cost function increasing in

each argument and minimized when the arguments in are decreas-
ing order. Then the following nonconvex constrained optimization
problem

min
B

F0 (d [E [E(B)]])

s.t. tr [BB∗] ≤ PT

(15)

can be approximated in the high SNR regime by the following sim-
pler problem:

min
p,ρ

F0(ρ1, ρ2, · · · , ρl)

s.t.
l�

j=i � (pjλj)−1

m−l � 1 − (m−l)(pjλj)−1+ � l
k=1(pkλk)−1

(m−l)2−1 � 

≤

l�
j=i

ρj , 1 ≤ i ≤ l

l�
j=1

pj ≤ PT , pj ≥ 0

ρi ≥ ρi+1, 1 ≤ i < l
(16)

where λi is the i-th largest eigenvalue of ΨH in increasing order.
If F0 is convex, the constraint ρi ≥ ρi+1 is not necessary. The
mapping from (16) to (15) is given by

B = UH,1ΣBQ

where the matrix UH,1 consists of the eigenvectors of ΨH corre-
sponding to the l largest eigenvalues in increasing order, ΣB =
diag � {√pi} � contains the power allocation obtained by the simpli-
fied problem (16) and Q is a unitary matrix such that d [E [E(B)]] =
ρ (see [22] for a practical method to obtain Q).

The above scalarized optimization problem (16) can be greatly

simplified when the cost function F0 is Schur-concave or Schur-

convex.

Theorem 2 If F0 is Schur-concave, the optimal solution is

B = UH,1ΣB

and the scalarized problem (16) can be further simplified:

min
p,ρ

F0(ρ1, ρ2, · · · , ρl)

s.t. (pjλj)−1

m−l � 1 − (m−l)(pjλj)−1+ � l
k=1(pkλk)−1

(m−l)2−1 �
≤ ρj , 1 ≤ i ≤ l

l�
j=1

pj ≤ PT , pj ≥ 0

ρi ≥ ρi+1, 1 ≤ i < l.

(17)

2By high SNR, we mean min SNR ≥ (2m−l)/[(m−l+1)(m−l−1)].

If F0 is Schur-convex, the optimal solution to Theorem 1 is

B = UH,1ΣBQ

where Q is a unitary matrix such that E [E(B)] has identical diag-
onal elements (see [22] for a practical method to obtain Q). The
scalarized optimization (16) can be further simplified to

min
p

l�
j=1 � (pjλj)−1

m−l � 1 − (m−l)(pjλj)−1+ � l
k=1(pkλk)−1

(m−l)2−1 � 

s.t.

l�
j=1

pj ≤ PT

pj ≥ 0.
(18)

In general the problems (16) - (18) are nonconvex, so the op-

timization relies on a grid and gradient search method, which may

give local minima. Surprisingly, it can be shown that the problem

(18) approaches a convex function for sufficiently large (m − l)PT ,

which makes implementation feasible.

5. NUMERICAL EXAMPLES

Here some numerical results based on Monte Carlo simulations are

presented to evaluate our robust designs for high SNR formulation.

As design criterion we choose the minimization of the worst

BER with a given set of equal constellations (which is a Schur-

convex function [2]). Three methods are compared: i) naive solu-

tion (which assumes the channel estimate as perfect, so the optimal

transceiver in [2] is used); ii) the proposed robust solution; and iii)

the ideal solution assuming an instantaneous and exact CSIT. Ob-

serve that for all these approaches the receivers are always given by

the Wiener filter in (9).

In the high SNR formulation, the simplified problem is noncon-

vex and is solved by grid and gradient search method. As pointed

out in Section 4, the search converges very quickly when (m− l)PT

is large because the problem approaches a convex function.

The channel estimate Ĥ is modeled as (4) where the true chan-

nel matrix H ∼ CN (0, In ⊗ Im) and H∆ ∼ CN (0, εR∆ ⊗ Im).

The positive scalar ε measures the accuracy of the channel estimate

Ĥ. The covariance matrix R∆ is Toeplitz with the first column de-

fined by the correlation coefficient ρt as [1 ρt ρ2
t · · · ρn−1

t ]T . Sim-

ulation results are averaged over H and H∆.

Fig. 1 shows the numerical comparison of the three methods.

The robust design is always better than the naive case, with a gain of

about 2-10dB in terms of transmit power. When the SNR increases,

the performance difference between the robust design and the naive

design increases as well.

6. CONCLUSION

We have addressed the robust linear transceiver design problem for

MIMO systems in the case of imperfect CSIT and perfect CSIR. The

proposed framework solves the design problem when the CSIT takes

the form of the channel mean and/or the covariance matrix. Two very

general classes of cost functions, Schur-convex and Schur-concave,

are considered in detail. Approximations of the Wishart distribu-

tion, which are valid for the low SNR and the high SNR regime

separately, are used to obtain simple optimization problems. For low

SNR, the Schur-convex cost function may always be solved by a con-

vex quadratic program, while certain Schur-concave cost functions

are also solved as convex problems. For high SNR, Schur-convex
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Fig. 1. Worst case BER for high SNR with mean and covariance

feedback CSIT using 64QAM for all substreams (m = 12, n =
10, l = 4, ρt = 0.75, ε = 0.6).

cost functions may be solved by a convex quadratic program under

certain mild conditions. Summarizing, the complicated nonconvex

robust linear MIMO transceiver design problem can be well approx-

imated as simpler scalar optimization problems that can be readily

solved in practice. Numerical examples of the design framework

showed promising gains compared to other suboptimal methods.
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