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ABSTRACT
In this paper, we solve the weighted sum rate problem for an or-

thogonal frequency division multiplexing (OFDM) broadcast chan-

nel (BC) under a sum power constraint, if minimum rates have to
be guaranteed in each fading state and perfect channel state in-

formation (CSI) is assumed at the base station and the mobiles.

The problem is subdivided into two problems. First, we tackle the

problem of feasibility, which occurs since the system is power lim-
ited and not all required rates might be supportable. Subsequently,

the optimal resource allocation in case of feasibility is derived.

Moreover, the optimal decoding order, which is not determined by

the problem formulation itself, is obtained as the ordering of the
Lagrangian factors of the main problem. Finally, we show that the

problem is closely related to the weighted rate sum maximization

and sum power minimization and all three can be interpreted in a

unifying framework embedded in a higher dimensionality.

1. INTRODUCTION

For a major part of future wireless communication systems OFDM

is going to be a key technology due to its advantages over CDMA
such as frequency selective resource allocation, robustness against

intersymbol interference and extremely simple signal processing

due to (I)FFT. Not only promising standards already fixed (such

as the 802.11 family and 802.16) are based on OFDM, but also

OFDM will likely become a predominant core technology for fu-
ture 3G+ and 4G mobile communication systems. In this context,

optimal resource allocation is a key challenge due to the scarcity

and expense of bandwidth and power. To derive efficient algo-

rithms for real world systems, the understanding of the underlying
information theoretic problems is of great importance. Not only it

provides a fundamental upper bound for all feasible schemes due

to the idealized assumptions (such as e.g. Gaussian codebooks and

ideal successive interference cancellation (SIC)), but also gives in-
sights into the problem structure. Using recently established dual-

ity of BC and multiple access channel (MAC) [1], all results can

be carried over from uplink to downlink and vice versa. Further-

more these theoretical results can be used to describe quite well
real world systems by using the SNR gap approximation.

In a cellular OFDM system, the base station has to be aware of

different constraints. First, it has to keep the buffer queues finite in

order to avoid overflows and hence to stabilize the system. In each
time slot a certain amount of power is available, since inter cell

interference has to be limited and peak power constraints might
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be imposed by the used amplifiers. This leads to an optimization
problem, which maximizes a queue length-weighted sum of rates

[2].This is a well known approach and was studied for the (MIMO-

) OFDM downlink in [3, 4]. We can interpret this point of view

as a fixed power strategy, where unfortunately fairness can not be
guaranteed and the near-far problem might lead to unacceptable

long delays. A second type of constraints the base station has to

take into account are rate requirements originating from Quality of

Service (QoS) demands (e.g. in form of delay constraints). This

perspective leads to a sum power minimization problem for given
rate requirements gaining interest recently. It was analyzed for a

fixed decoding order in for OFDM [5] and multiple input multiple

output (MIMO) [6] channels leading to nonconvex formulations.

The general OFDM case was solved recently in [7].

In this paper we combine the two perspectives to a more ad-

vanced and more realistic problem, where the limited sum power
has to be allocated optimally such that the system is stabilized and

certain minimum rates are guaranteed in each fading state. This

is a perspective similar to [8], where the problem of guarantee-

ing rates in each fading state for a flat scalar BC was addressed
from an ergodic viewpoint. However, this approach can not be

carried over to OFDM. We show how our problem is connected

to the sum power minimization and the weighted sum rate max-

imization. Subsequently, we give a condition for feasibility and
derive the optimal decoding order as a part of the solution. Then

we present an algorithm yielding the optimal resource allocation

and give a Lagrangian interpretation of the enhanced joint set of

rates and sum power (R, P ).

The remainder of this paper is organized as follows. Section 2

contains the system model and the problem statement. In Section
3, a unifying perspective is presented and the solution to the prob-

lem is derived. Subsequently, an efficient algorithm is presented.

Finally we conclude with some remarks in Section 4.

2. SYSTEM MODEL AND PROBLEM STATEMENT

Supposing familiarity with OFDM we assume an OFDM BC with

K subcarriers, M users and a short term sum power constraintPM,K
m,k=1 E{|xm,k|2} ≤ P̄ , where xm,k is the signal transmitted

to user m on subcarrier k and E{.} stands for the expectation op-
erator. Then the system equation on each subcarrier can be written

as

ym,k = hm,k

X
j∈M

xj,k + nm,k ∀k (1)

where ym,k is the signal received by user m on subcarrier k, nm,k ∼
CN (0, σ2) is circular symmetric additive white Gaussian noise

with variance σ2 and M = {1, ..., M} denotes the set of users.
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Let h = [h1,1, . . . , h1,K , h2,1, . . . , ...hM,K ]T denote the stacked

vector of channel coefficients. We assume that superposition cod-

ing is performed at the base station having full non-causal knowl-
edge of all messages to be transmitted. The users decode their

messages using successive interference cancellation. Let π ∈ Π
be an arbitrary decoding order from the set of all M ! possible de-

coding orders, such that user π(M) is decoded first, followed by
user π(M − 1) and so on. Then the rate of user π(m) can be

expressed as

R̃π(m) =
KX

k=1

log

„
1 +

|hπ(m),k|2pπ(m),k

σ2 + |hπ(m),k |2
P

n<m pπ(n),k

«
, (2)

where all logarithms are to the base e in the following. The capac-
ity region of the OFDM BC under a given sum power constraint P̄
is given by

CBC(h, P̄ ) ≡
[

π∈ΠPM,K
m,k=1

pm,k≤P̄

n
R : Rπ(m) ≤ R̃π(m) , m ∈ M

o

where R̃π(m) is defined in equation (2) and R = [R1, ..., RM ]T

denotes the vector of rates. Now let

vk =
MX

j=1

hm,kum,k + nk ∀k (3)

be the system equation for the dual MAC with vk being the re-

ceived signal on carrier k, um,k the signal transmitted from user

m on carrier k and nk ∼ CN (0, σ2). We know from recent re-

sults [1, 9, 10], that the capacity regions OFDM MAC and BC are
dual:

CBC(h, P̄ ) ≡ CMAC(h, P̄ ) (4)

This allows to solve problems for the broadcast channel in the dual

multiple access channel (MAC) and to relate them to the BC by

uplink-downlink duality and vice versa. For the ease of notation,
we omit the subscript ·BC in the following.

2.1. Problem Statement

In this paper, we are interested in the solution to the following

problem:

Problem 1 [Main Problem]

maximize
MX

m=1

µmRm

subject to Ri ≥ R̄i ∀i ∈ S ,S ⊆ M
R ∈ C(h, P̄ )

(5)

The first condition reflects the minimum rate requirements for all

users in S and the second condition is due to the sum power con-

straint P̄ . To derive the solution to the stated problem, we charac-

terize two subproblems: The first is the well known maximization
of a weighted sum of rates for a given channel and under a given

sum power constraint P̄ [3].

Problem 2 [Weighted Sum Rates Problem]

maximize
MX

m=1

µmRm subj. to R ∈ C(h, P̄ ) (6)

The second is the recently solved sum power minimization prob-

lem [7]:

Problem 3 [Minimum Sum Power Problem]

minimize P subj. to Ri ≥ R̄i ∀i ∈ S ,S ⊆ M
R ∈ C(h, P )

(7)

3. OPTIMUM RESOURCE ALLOCATION

3.1. A global perspective

We begin by deriving a unique framework for all problems in a

higher dimensionality. By the concavity of the log-function it is
easy to prove the following lemma:

Lemma 1 Define the set G(h) = {R, P : R ∈ C(h, P )}. The
set G(h) is a convex set.

Obviously, the duality of MAC and BC holds for the enhanced set

G(h), too. By Lemma 1 there are λ ∈ R++ and µ̃ ∈ R
M
+ such

that Problems 1-3 are equivalent to solving the following problem:

max

MX
m=1

µ̃mRm − λP subj. to (R, P ) ∈ G(h) (8)

This is a convex problem, since the function in (8) is affine and
the set G(h) is a convex set. To see the coherence of all problems,

note that in Problem 2 the Lagrangian factors µ̃ are known and λ
is the power price. In Problem 3 we have λ = 1 and the vector

µ̃ constitutes the Lagrangian vector of the rate requirements. The
relation to Problem 1 will be pointed out in the remainder of this

paper. In all cases we search for parts of the Lagrangian normal

vector to the supporting hyperplane and parts of the optimal sup-

ported point on the boundary of G(h). We will see further, that in

combination with the subcarrier-wise rate-power relation a general
tool for designing iterative algorithms is available. In this case the

µ̃ have the additional interpretation as water-filling levels.

3.2. Maximization of a weighted sum of rates

In [3] it was shown via uplink-downlink duality and by exploiting
the properties of polymatroids, that Problem 2 can be reformu-

lated as a convex optimization problem. In [10], Tse presented an

algorithm for solving this problem for parallel Gaussian channels

directly in the downlink. This algorithm can be carried over to
the OFDM BC case. He introduces the elegant notion of marginal
utility functions to characterize the revenue of each user to the ob-

jective function:

u(k)
m (z) =

µm“
σ2

m,k/|hm,k|2 + z
” − λ (9)

The set of equations characterizing the solution is given by

Rm =

∞Z
0

X
k:u

(k)
m (z)=

h
maxi u

(k)
i (z)

i+

1“
σ2

m,k/|hm,k |2 + z
” dz

(10)

P (λ) =
KX

k=1

h
max

m
(
µm

λ
− σ2

m,k/|hm,k|2)
i+

(11)

where λ is the Lagrangian parameter of the sum power constraint
and [a]+ := max(0, a). For a detailed study the reader is referred

to [10,11]. The solution can be found by solving equation (11) for

the Lagrangian multiplier λ. This can be done by simple bisection,

since the RHS of (11) is monotone in λ.
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Algorithm 1 Weighted rate sum maximization

(1) solve (11) for Lagrangian factor λ
(2) determine intersections of marginal utility functions (9) for

all K
(3) calculate resulting rates (10)

3.3. Sum power minimization

Problem 3 was solved in [7] recently. The problem is considered

in the dual MAC, and virtual subcarrier specific decoding orders

πk ∈ Π ∀k are introduced such that

|hπk(1),k|2 ≥ |hπk(2),k|2 ≥ · · · ≥ |hπk(M),k|2. (12)

We call these virtual, since they are only a mathematical tool to ob-

tain the solution including the global decoding order. In principle,

the OFDM MAC is a nondegraded channel. Nevertheless, it can

be decomposed to a union over degraded channels. This allows to
exploit the known properties of degraded channels such as the op-

timal decoding order. This leads to a log-convex formulation of the

problem. Having in mind the Lagrangian interpretation, we note

the following: to determine the optimal decoding order the result-
ing Lagrangian multipliers {µm}M

m=1 have to be ordered, since

they determine the optimal vertex of the corresponding polyma-

troid. Interestingly, as shown in [7], the problem is not convex for

fixed decoding orders - not even for the optimal decoding order.
Define coefficients nm,k as

nm,k := log

(
e

P
n>m

Rπk(n),k
h σ2

|hπk(m),k|2

+

m−1X
j=1

σ2

|hπk(j),k|2
“
eRπk(j),k − 1

”
e

m−1P
n=j+1

Rπk(n),k
i)−1

.

(13)

Then the Karush-Kuhn-Tucker (KKT) conditions can be writ-

ten in a form allowing water-filling:

Rπk(m),k =
h
log(µm) + nm,k

i+

, ∀m, k (14)

This motivates Algorithm 2, which shows excellent convergence

behavior due to the log-convexity and the semi-analytic stepwise

solution through water-filling.

Algorithm 2 Iterative ”rate water-filling”

set Rm,k = 0 ∀m ∈ M, k = 1, ..., K
while desired accuracy is not reached do

for m = 1 to M do
(1) compute the coefficients nm,k (13) for user m
(2) do water-filling with respect to the rates Rm,k for user

m as in equation (14)

end for
end while

Theorem 1 (proven in [7]) Algorithm 2 converges to a stationary
point Pmin , which is the global optimum of Problem 3.

Note, that in principle the formulation from [10] can be used to

solve the problem; however, it is much more complicated, since in

each step varying λ all intersections of all relevant marginal utility

functions have to be calculated on each carrier.

3.4. The main problem

With the insights of the preceding sections, we turn to Problem

1: In contrast to the two previously considered problems, which

are always feasible, the feasibility of Problem 1 is not guaranteed.
The solution to the sum power minimization problem character-

izes feasibility of the main problem implicitly. Obviously the main

problem is feasible, if the minimum power to fulfill the vector of

rate constraints Pmin smaller than the power budget P̄ . Other-

wise, the feasible set of Problem 1 is empty. Let us first interpret
the solution in terms of (8).

3.4.1. Lagrangian interpretation of the solution
Define the vector µ̃ = [µ1 +µ∗

1, ..., µM +µ∗
M ]T . The components

µm are the weight factors from (5) and the components µ∗
m are the

Lagrangian multipliers of the rate constraints in (5). Further λ is

the Lagrangian multiplier due to the power constraint P̄ . Then the

vector [µ̃ λ]T is the normal vector of the supporting hyperplane to

the region G(h) and the supported point is the solution (R∗, P̄ ) to
(5). The Lagrangian factor µ∗

m is strictly greater than zero if and

only if the rate constraint of user m is active. Then µ∗
m delivers

a revenue to the corresponding normal vector of the supporting

hyperplane, assuring the minimum rate.

3.4.2. Optimal decoding order
To derive the optimal decoding order, we focus on the Lagrangian

interpretation: we know that the vector R∗ is the solution to the

optimization problem:

max

MX
m=1

µ̃mRm subj. to R ∈ C(h, P̄ ) (15)

The point is achieved with an decoding order π∗ such that

µ̃π∗(M) ≥ µ̃π∗(M−1) ≥ · · · ≥ µ̃π∗(1) (16)

and the solution R∗ is the vertex Rπ∗
of the corresponding poly-

matroid. Note, that the optimal decoding order can not be de-
termined a priori, since the required weight vector µ̃ - including

the Lagrangian factors of the rate requirements - is not known.

The weights µ constitute only a part of the overall normal vector.

Hence, the optimal decoding order is part of the solution. This

interesting fact is in analogy to [7], where the Lagrangian weight
vector µ is completely unknown a priori.

3.4.3. Algorithmic Solution

To solve Problem 1, we combine the two presented algorithms: In

a first step, feasibility is tested by sum power minimization. In

case of feasibility, in each step the Lagrangian parameters µm are
adjusted for all users with violated rate constraints.

Algorithm 3 Minimum Rates Algorithm

(1) check feasibility with Algorithm 2

while desired accuracy not reached do
for m = 1 to M do

if Rm < R̄m then
(2) adjust µm such that Rm = R̄m using Algorithm 1

end if
end for

end while

Alternatively, we propose the following algorithm which is

based on eq. (8). Depending on whether the rate constraints are

active, the water-filling level is adjusted such that the requirements
are fulfilled. We have the following theorem ensuring conver-

gence:
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Algorithm 4 Alternative Minimum Rates Algorithm

(1) check feasibility with Algorithm 2

(2) choose initial Lagrangian factors λ+ and λ−
while sum power constraint P̄ is not met do

while desired accuracy not reached do
for m = 1 to M do

(3) compute the coefficients nm,k (13) for user m
(4) do water-filling with fixed level µm (14)

if Rm < R̄m then
(5) choose water-filling level log(µm +µ∗

m) such that

Rm = R̄m

end if
end for

end while
(6) increase (decrease) λ if P > P̄ (P < P̄ ) by bisection

end while

Theorem 2 (from [12]) Algorithm 3 and 4 converge to a station-
ary point R∗, which is the global optimum of Problem 1.
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Fig. 1. Example for rate requirements R1 ≥ 2 and R1 ≥ 1 and
C(h, P̄ ) for 256 subcarriers at 10dB with original weight vector

µ and resulting Lagrangian vector µ̃ = µ + µ∗

3.5. A unifying framework
Interestingly, all problems presented in this paper can be solved
with algorithms based on the KKT-conditions given in equation

(14). This is possible since a unique bijective transformation be-

tween the rates Rm and the corresponding powers pm exists in

the case of SISO BC and MAC in general. Fortunately this also
holds per subcarrier for OFDM . Note, that it does not apply to

the MIMO case. The set of equations in (14) combined with the

Lagrangian interpretation on the set G(h) allows an iterative op-

timization also for the problem of maximizing a weighted sum
of rates. So iterative rate water-filling for fixed levels (fixed La-

grangian multipliers µ), delivers a convergent algorithm for the

maximization of a weighted sum of rates. Nevertheless, Algorithm

2 is more efficient, since it solves for the rates only once, after the
correct Lagrangian multiplier λ was determined.

4. CONCLUSIONS

In this paper we characterized the solution to the problem of max-

imizing the stability region while guaranteeing minimum rates for

the OFDM broadcast channel. We showed that this is a convex

optimization problem and gave a condition for feasibility. Fur-

ther, we showed that the problem can be interpreted in a higher
dimension in terms of the enhanced convex set (R, P ) introduced

in [11]. It was shown, that the sum power minimization problem

from [7] and the weighted sum maximization problem are related

to the considered problem in (R, P ) and all three problems can be
seen as the optimization of a linear function over a convex set. We

then presented an efficient algorithm, which solves the problem

and proved convergence. Further, we derived the optimal decod-

ing order, which can be determined from the users weights and
the Lagrangian factors for the rate requirements, if they are active.

Due to duality, all results hold for the uplink as well.
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