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ABSTRACT

In this paper, we study the limited feedback model for par-
tial CSI at the basestation (BS) for multiple antenna broad-
cast channels: the BS has the knowledge of quantized CSI of
each user. We first give a practical limited feedback scheme
designed for multiple antenna broadcast channels. Then, we
study the sum rate performance of zero-forcing dirty paper
coding under the proposed limited feedback scheme. An up-
per bound is also derived to get some insight about the im-
pact of the use of limited feedback. Interestingly, we find
that the systems experience a ceiling effect on the sum rate
for a fixed feedback rate.

1. INTRODUCTION

Recently, multiple antenna broadcast channels have re-
ceived significant research interest because of their spectral
efficiency improvement and potential for commercial appli-
cation in wireless systems. It was shown in [1, 2, 3] that
multiple antennas at the basestation (BS) provide a sum rate
capacity increase that grows linearly with the minimum of
the number of transmit antennas and users. The resulting
sum rate advantage can be achieved through dirty paper cod-
ing with perfect channel state information (CSI) available at
BS. There also has been some work in the area of practical
signaling for the multiple antenna broadcast channel, see [4]
and reference there in.

On the other hand, the limited feedback model for par-
tial CSI has received much interest for single user multi-
ple antenna systems over the past few years. It describes
some form of CSI as an index in a pre-determined code-
book. The codebook is known at both the receiver and trans-
mitter and is designed to capture the essential information
of the CSI that is critical for channel capacity or error rate
performance, see [5] and reference there in.

In this paper, we consider the limited feedback model
for partial CSI at the BS of multiple antenna broadcast chan-
nels. This model was independently studied by Jindal[6] for
channel inversion very recently. Here we focus on the zero
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forcing dirty paper coding (ZFDPC) signaling scheme and
assume that the BS has N antennas while each mobile has
a single antenna due to size and battery constraints. Either
user selection or user ordering under limited feedback are
beyond the scope of this paper. Therefore, the number of
user K is assume to be equal to N , i.e., K = N . Each user
sends the binary index of the best codevector from the code-
book through a zero-error, zero-delay feedback channel to
the BS. A limited feedback scheme designed for multiple
antenna broadcast systems is proposed.

The key differences between our scheme and the lim-
ited feedback for single user MIMO channels are the fol-
lowing: i.) For multiple antenna broadcast channels, each
receiver only knows its own channel instead of the full CSI
and the users can not cooperate. Each user is unable to ob-
tain the optimal precoding or beamforming structures which
are usually computed from the full CSI. Therefore, in our
scheme, the vector quantization is applied to the channel
vector itself instead of to the beamforming vector or pre-
coding matrices, which is usually the case for single user
MIMO systems where the receiver has full CSI [7]; ii.) The
codebook of each user should be different from others. Oth-
erwise, there is a chance that two or more users quantize
their channel vectors to the same codevector which will
cause a rank loss in the channel matrix composed by those
codevectors. To avoid this situation, we let every user rotate
a general codebook by a random unitary matrix that is also
known at the BS. So the channel matrix at the BS is full
rank with probability one. Also under Rayleigh fading, the
codebook used by different users is equivalent to each other
in the sense of quantization error.

We analyze the ergodic sum rate of ZFDPC under lim-
ited feedback. An upper bound is derived for the ergodic
sum rate and provide important insights into the impacts of
the use of limited feedback. From both theoretical analysis
and numerical results, we find that the mismatch between
the quantized channel vectors and the perfect channel vec-
tors results in additional cross user interferences and leads
to a ceiling effect on the sum rate for a fixed codebook size
as the SNR increases.
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2. BACKGROUND

2.1. Channel Model

Consider a broadcast channel consisting of an N -antenna
BS and K single-antenna users. Assuming that the channel
is flat-fading, it can be modeled as

y = Hx + v (1)

where H = [h1, . . . ,hK ]T and hk is the N × 1 channel
fading vector between the BS and the kth user. x is the N×1
transmitted signal, v is the k × 1 zero mean complex white
noise with variance one, and y = [y1, y2, . . . , yK ]T where
yk is the received signal at user k. Under an i.i.d. Rayleigh
fading assumption, hk ∼ CN(0, IN ) and E[hkhH

l ] = 0
if k �= l. The following power constraint is applied to the
transmitted signal

E[‖x‖2] = P (2)

where P is the maximum total transmit power over one time
slot. Since the noise power is normalized, P also represents
the SNR.

The key difference between (1) and single user MIMO
is that the receive antennas can not cooperate in the broad-
cast case. As a consequence, user i can only obtain the state
information of its own channel which is hi in this case. We
assume that K = N to avoid the discussion about user se-
lection and user ordering both of which are very important
but beyond the scope of the paper.

2.2. Zero-Forcing Dirty Paper Coding

ZFDPC is proposed in [1] and is shown to provide an
optimal throughput for asymptotically large SNR. In the
ZFDPC scheme, the BS collects the channel knowledge H
from the users and then decomposes it into

H = GQ

where G is a K × N lower triangular matrix and Q is an
N ×N unitary matrix. Applying QH to the original source
signal s = [s1, . . . , sN ]T as a precoding matrix gives x =
QHs, and the input-output relationship for the ith user

yi = giisi +
∑
j<i

gijsj + vi, (3)

where gij is the (i, j) element in G. By treating
∑

j<i gijsj

as the known interference and judiciously generating si ac-
cording to dirty paper coding, these N cross interfering sub-
channels have the same capacity as N parallel Gaussian
channels with fading gains gii, i = 1, . . . , N . The result-
ing sum rate is

Rdpc =
N∑

i=1

log2

(
1 + |gii|2Pi

)
(4)

where Pi is the power allocated to user i and satisfies∑N
i=1 Pi = P . The maximum sum rate is achieved through

waterfilling power allocation.

3. LIMITED FEEDBACK FOR MULTIPLE
ANTENNA BROADCAST CHANNELS

At the receiver side the total CSI H is separated into
{h1, h2, . . . ,hK} and distributed among the K users. User
i only knows hi and no user can obtain the information
about the optimal transmission scheme (for example, the
precoding matrix QH in the ZFDPC scheme) which is
based on the full knowledge of H . Therefore, in our lim-
ited feedback scheme, the codebook is constructed for each
user to directly quantize the channel vector itself.

Consider a codebook W which contains L codevectors
W = {w1, . . . ,wL}. We use minimum distance selection
and mean square error as the encoding function and distor-
tion measure, respectively. User i encodes its channel vector
hi into

QW(hi) = wli

where li = arg min1≤j≤L ‖hi − wj‖. Every user sends
their index li back to the BS, so that the channel knowledge
at the BS is

Hw = [wl1 , wl2 , . . . ,wlK ]T .

The average distortion introduce by quantization according
to codebook W is defined as

DW = Eh

[‖QW(h) − h‖2
]
. (5)

An optimal codebook in the sense of (5) for a given size L
can be construct by the generalized Lloyd algorithm [8].

If a general codebook is used by all the users, Hw will
become ill-conditioned when two or more users select the
same codevector in the codebook. To avoid such degrada-
tion, we propose to use different codebooks at each user.
Let W(i) = {w(i)

1 , . . . ,w
(i)
L } be the codebook used by user

i. We want
w

(i)
l �= w(j)

m for i �= j; l,m = 1, . . . , L (6)
We also require that the codebooks provide the same aver-
age distortion, i.e.

DWi
= DWj

for i, j = 1, . . . , L. (7)
To achieve (6) and (7), a general codebook W is first

generated. Then every user rotates the common codebook
by a random unitary matrix T i, T

H
i T i = I . Thus, the code-

book used at user i is
Wi = T iW = {T iw1, . . . ,T iwL }.

Since the distribution of the channel vectors is invariant
to unitary rotation, these rotated codebooks have the same
mean square quantization errors. The CSI at the BS is then

Hw = [QW1(h1), . . . ,QWK
(hK)]T ,

and rank(Hw) = N with probability one.
Furthermore, we will model the codebook’s conditional

behavior as

E

{
‖hi −QWi(hi)‖2 | QWi(hi)

}
= D (8)

and
E {hi −QWi(hi) | QWi(hi)} = 0. (9)
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4. SUM RATE UNDER LIMITED FEEDBACK

4.1. Sum Rate Performance

When limited feedback is used with ZFDPC, the BS as-
sumes Hw to be the perfect CSI and applies the QR-type
decomposition Hw = GwQw to get the precoding matrix
QH

w . The resulting input-output relation is
y = (Hw + ∆)QH

w s + v

= Gws + ∆QH
w s + v

where ∆ = H − Hw. For the ith user, we have
yi = gw

iisi +
∑
j<i

gw
ijsj + (∆)T

i QH
w s + vi (10)

where (∆)T
i is the ith row vector of ∆ and gw

ij is the (i, j)
element in Gw. The gain gw

ii is revealed to user i. We will as-
sume that s is generated using successive dirty paper coding
with Gaussian codebooks such that E

{
ssH

}
= P

N I. The
BS encoder is assumed to have perfect knowledge of the
noise variance and the quantizer distortion. The receiver i
uses minimum distance decoding to recover the transmitted
codeword assuming a multiplicative channel value of gw

ii . A
discussion of decoding for dirty paper coding can be found
in [9].

Comparing (10) with (3), we see there is an additional
interference ui = (∆)T

i QH
w s which is unknown at both

the BS and the receiver. Since QH
w s ∼ CN(0, PI/N) and

the source signal s is independent of the quantization error
(∆)T

i , the variance of the interference is

E[uiu
∗
i ] =

P

N
E

[‖QWi(hi) − hi‖2
]

=
DP

N
(11)

where D is the average distorting of the codebook defined
in (5). Here we take average over the quantization error by
assuming each codeword experiences the channel state er-
godically.

Thus, under limited feedback, the ZFDPC precoding
gives us a lower triangular channel Gw with interference-
plus-noise power of each subchannel is equal to 1+DP/N .
By applying successive dirty paper coding to the lower tri-
angular channel Gw, the supremum of all achievable sum
rates using limited feedback and Gaussian ZFDPC encod-
ing, Rdpc

lim , is bounded as

Rdpc
lim ≤

N∑
i=1

E

{
log2

(
1 +

|gw
ii |2P/N

1 + DP/N

)}
(12)

where equal power allocation is assumed and the expecta-
tion is over Hw. This follows from the generalized mu-
tual information work in [10, 11] using i) the assumption
of Gaussian codebooks, ii) (8), and (9), and (11) and iii) the
fact that D and E[|v|2i ] = 1 are known at the encoder. Note
that the bound in (12) is a necessary, rather than sufficient,
condition for achievability.

Since it is hard to quantify gw
ii , we derive the following

upper bound.

Theorem 1 Rdpc
lim in (12) is upper bounded by

Rdpc
lim ≤ N log2

(
1 +

P η̄

N + PD

)
(13)

where η̄ = E{‖wli‖2} = N − D.

Proof : Using Jensen’s inequality on (12), we have

Rdpc
lim ≤ NE

{
log2

(
1 +

P

N + DP

1
N

N∑
i=1

|gw
ii |2

)}
.

(14)
For a QR-type decomposition, we have

|gw
ii |2 ≤

i∑
j=1

|gw
ij |2 = ‖(Hw)T

i ‖2 = ‖wli‖2 (15)

where the equality
∑i

j=1 |gw
ij |2 = ‖(Hw)T

i ‖2 comes from
the orthogonality of the columns of the Q in the decompo-
sition. By substituting (15) into (14), we have

Rdpc
lim ≤ NE log2

(
1 +

P
∑N

i=1 ‖wli‖2

N(N + DP )

)
(16)

≤ N log2

(
1 +

P
∑N

i=1 E{‖wli‖2}
N(N + DP )

)
(17)

where the second inequality is from Jensen’s inequality.
Since the channel vectors are i.i.d. distributed, we have
η̄ = E{‖wli‖2} = E{‖wlj‖2} = (N − D) according
to assumption (8) for i, j = 1, . . . , K and get the bound.
Q.E.D.

For the case L → ∞, i.e., the perfect feedback case, we
have D → 0 and η̄ → E‖hi‖2 = N . The bound changes
into

Rdpc ≤ N log2 (1 + P )

which can be seen as the result of applying the Jensen’s in-
equality to the throughput of N non-interfering MISO chan-
nels with i.i.d. Rayleigh fading and transmit power P/N .

The bound implies that a ceiling effect occurs on the
sum rate under limited feedback for asymptotical high SNR,
because

lim
P→∞

Rdpc
lim ≤ N log2

(
1 +

η̄

D

)
. (18)

This ceiling effect is also found in [6] for in the setting of
zero-forcing beamforming (channel inversion).

Intuitively speaking, the ceiling effect is because the
power of the cross user interference is related to the signal
power P . To avoid the ceiling effect, we should at least let
the interference power keep constant as P increases. This
also enables us to roughly compute the feedback rate re-
quired for an applicable limited feedback system. For the
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interference power DP
N to be at least constant as P in-

creases, we should have D of order O(N/P ). From the
rate-distortion theorem [8], we know that the number of bits
b necessary for each user to represent its N × 1 channel
vector hi with average distortion D is

b = N log2(N/D). (19)

By replacing D with O(N/P ) in the rate-distortion function
(19), we have

b = O(N log2 P )

which is the approximate number of bits necessary for the
system to avoid the sum rate ceiling. We see that b has to
increase logarithmically with P and should scale linearly
as the number of transmit antenna N grows. For example,
when P = 10dB and N = K = 4, we have b ≈ 13 bits for
each user.

4.2. Simulation Results

In this section, we give numerical result on the ergodic sum
rate performance of limited feedback. Since the noise power
is normalized, the plotted SNR in the figures is SNR =
10 log10 P .
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Fig. 1. Ergodic sum rate (solid lines) and upper bound
(dashed lines) of limited feedback with ZFDPC for N =
K = 4.

Fig. 1 shows the ergodic performance of Rdpc
lim and the

respective upper bound for N = K = 4 when the feedback
rate of each user is 5bits and 10bits. The ceiling effect can
be clearly observed. The sum rate curves increase linearly
with SNR for low SNR situation and becomes flat for high
SNR regime. The result also indicates that these overhead
rate is not enough for a system operating at SNR ≥ 20 dB.

5. CONCLUSION

We proposed a limited feedback scheme for multiple an-
tenna broadcast channels which avoids the ill-conditioning
of BS CSI by randomly rotating the general codebook at
each receiver. We derive an upper bound for sum rate of
limited feedback under ZFDPC. The bound gives critical
insight about the sum rate performance of limited feedback.
It shows that the systems experience a ceiling effect on the
sum rate for a fixed feedback rate.
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