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ABSTRACT

This paper considers multiple-input multiple-output (MIMO) an-
tenna systems employing transmit beamforming (BF) with maxi-
mum ratio combining (MRC) receivers. Rayleigh fading environ-
ments are considered, with both transmit and receive spatial corre-
lation. Exact expressions are presented for the probability density
function (p.d.f.) of the output signal-to-noise ratio (SNR), as well
as the system outage probability. The results are based on efficient
closed-form expressions which we derive for the p.d.f. and c.d.f. of
the maximum eigenvalue of double-correlated complex Wishart ma-
trices. The results are validated through comparison with Monte-
Carlo simulations, and used to examine the effect of spatial correla-
tion on the SNR p.d.f. and the outage probability.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) antenna technology can pro-
vide significant improvements in capacity [1, 2] and error perfor-
mance over conventional single-antenna technology, without requir-
ing extra power or bandwidth. Of the many practical MIMO trans-
mission schemes that have been proposed, MIMO transmit beam-
forming (BF) with maximum-ratio combining (MRC) receivers [3]
is particularly attractive when channel knowledge is available at both
the transmitter and receiver. MIMO-BF systems provide robustness
against the severe effects of fading by steering the transmitted signal
along the maximum eigenmode of the MIMO channel, such that the
signal-to-noise ratio (SNR) at the MRC output is maximized.

Recently, various authors have examined the performance of
MIMO-BF in uncorrelated Rayleigh, semi-correlated Rayleigh, and
uncorrelated Rician fading channels. In each case, the main chal-
lenge was to statistically characterize the SNR at the output of the
MRC combiner. In [4, 5], uncorrelated Rayleigh fading was consid-
ered, and the output SNR statistical properties were derived based on
maximum eigenvalue statistics of complex central Wishart matrices.
In [6], these results were extended to semi-correlated Rayleigh chan-
nels, utilizing properties of semi-correlated Wishart matrices. In [7],
the output SNR statistics in uncorrelated Rician channels were char-
acterized by deriving maximum eigenvalue properties of complex
noncentral Wishart matrices.

In practice, channels can exhibit double-sided correlation due to,
for example, insufficient scattering around both the transmitter and
receiver terminals, or to insufficiently spaced antennas (with respect
to the wavelength of the signal). In these cases, there does not appear
to be any analytic MIMO-BF performance results.

In this paper we statistically characterize the output SNR of
MIMO-BF in practical double-sided correlated Rayleigh channels.

We find that the SNR depends on the maximum eigenvalue statis-
tics of double-correlated complex Wishart matrices. In [8] the joint
probability density function (p.d.f.) of the eigenvalues of these ma-
trices was derived in terms of hypergeometric functions of three ma-
trix arguments, and the marginal p.d.f. of an arbitrary unordered
eigenvalue was derived in [9]. In this paper we derive new exact
closed-form expressions for the p.d.f. and cumulative distribution
function (c.d.f.) of the maximum eigenvalue of double-correlated
complex Wishart matrices. Based on these results, we then present
expressions for the p.d.f. of the MIMO-BF output SNR, as well as
the system outage probability. The expressions are verified through
comparison with Monte-Carlo simulations, and used to examine the
impact of correlation on both the SNR p.d.f. and outage probability.

2. MIMO BEAMFORMING SYSTEM MODEL

Consider a MIMO-BF system with Nt transmit and Nr receive an-
tennas, where the Nr × 1 received signal vector is

r =
√

γ̄Hwx + n (1)

where x is the transmitted symbol with E
[|x|2] = 1, w is the

beamforming vector (specified below) with E
[‖w‖2] = 1, n is

noise ∼ CNNr ,1 (0Nr×1, INr ), and γ̄ is the signal to noise ratio
(SNR). Also, H is the Nr × Nt channel matrix, assumed to be flat
spatially-correlated Rayleigh fading, and is decomposed according
to the common kronecker structure (as in [2, 8, 10], among others) as

H = R
1
2 HwS

1
2 ∼ CNNr ,Nt (0Nr×Nt ,R ⊗ S) (2)

where R and S are the receive and transmit correlation matrices re-
spectively, satisfying tr (R) = Nr and tr (S) = Nt, and Hw ∼
CNNr ,Nt (0Nr×Nt , INr ⊗ INt ).

The receiver employs the principle of MRC to give

z = w†H†r =
√

γ̄w†H†Hwx + w†H†n (3)

Therefore, the SNR at the output of the combiner is easily derived as

γ = γ̄w†H†Hw (4)

The BF vector w is chosen to maximize this instantaneous SNR,
thereby minimizing the error probability. Based on this criterion, it
is well known that the optimum BF vector wopt is the eigenvector
corresponding to the maximum eigenvalue λm of H†H. In this case,
the beamformed SNR (4) becomes

γ = γ̄w†
optH

†Hwopt = γ̄λm (5)
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Clearly the SNR (and therefore the performance) of MIMO-BF
depends directly on the statistical properties of λm, which we con-
sider in the following section. Note first that the following section
considers full rank matrices, and as such, when Nr ≥ Nt we will
use the results to analyze H†H, and when Nr < Nt we will use
the results to analyze H†H (since λm is the maximum eigenvalue of
both H†H and HH†).

3. LARGEST EIGENVALUE STATISTICS OF
DOUBLE-CORRELATED COMPLEX WISHART

MATRICES

3.1. Cumulative Distribution Function (C.D.F.)

The following theorem presents the c.d.f. of the maximum eigen-
value of double-correlated complex Wishart matrices. This will be
used for deriving the outage probability of MIMO-BF in double-
correlated Rayleigh channels.

Theorem 1 Let X ∼ CNm,n (0m×n,Σ ⊗ Ω), where n ≤ m, and
Ω ∈ Cn×n and Σ ∈ Cm×m are Hermitian positive-definite ma-
trices with eigenvalues ω1 < . . . < ωn and σ1 < . . . < σm

respectively. Then the c.d.f. of the maximum eigenvalue λm of the
double-correlated complex Wishart matrix X†X is given by

Fλm(x) =
(−1)nΓn(n) det(Ω)n−1 det(Σ)m−1 det(Ψ̃(x))

∆n(Ω)∆m(Σ)(−x)n(n−1)/2
(6)

where Γn(·) is the normalized complex multivariate gamma func-
tion, defined as1

Γn(n) =

n∏
i=1

Γ(n − i + 1) . (7)

and ∆m(·) is a Vandermonde determinant in the eigenvalues of the
m-dimensional matrix argument, given by

∆m(Σ) =

m∏
i<j

(σj − σi) (8)

Also, Ψ̃(x) is an m × m matrix with (i, j)th element

(
Ψ̃(x)

)
i,j

=

⎧⎨
⎩

(
1

σj

)m−i

for i ≤ τ

e
− x

ωi−τ σj P
(
m;− x

ωi−τ σj

)
for i > τ

(9)

where τ = m − n, and P (�; y) = 1 − e−y ∑�−1
k=0 yk/k! is the

incomplete gamma function.

Proof: First consider the case of square random matrices X ∼
CNm,m(0m×m, Σ ⊗ Ω), and let λ1 < . . . < λm be the non-zero
eigenvalues of X†X. The c.d.f. of λm is obtained using

Fλm(x) =

∫
D

f(Λ) dΛ (10)

where Λ = diag{λ1, . . . , λm}, f(Λ) is the joint p.d.f. of λ1, . . . , λm,
and D = {0 ≤ λ1 ≤ . . . ≤ λm < x}. It was shown in [8] that

f(Λ) =
0F0

(−Ω−1,Σ−1,Λ
)
∆m(Λ)2

Γm(m)2 det(Ω)m det(Σ)m
(11)

1Note that this is related to the standard complex multivariate gamma
function Γ̃n(n) (as defined in [11]) via Γn(n) = π−n(n−1)/2Γ̃n(n).

where 0F0 (·; ·; ·) is a complex hypergeometric function of three
matrix arguments. To evaluate the integral in (10) we first expand
0F0(·) in complex zonal polynomials [11] as

0F0

(−Ω−1,Σ−1,Λ
)

=
∞∑

k=0

∑
K

C̃K(−Ω−1)C̃K(Σ−1)C̃K(Λ)

k!C̃K(Im)2

(12)

where the inner sum is over all partitions K = (k1, . . . , km) with
k1 ≥ k2 ≥ . . . km ≥ 0, and k1 + . . . + km = k. Using the
character representation for complex zonal polynomials [11], along
with Weyl’s formula [12], and changing from K to strictly ordered
partitions Ko = (k̃1, . . . , k̃m) with k̃1 > . . . > k̃m ≥ 0 (i.e. such
that ki + m − i → k̃i), we obtain2

0F0

(−Ω−1,Σ−1,Λ
)

=
Γm(m)2∏m

i<j

(
1

ωj
− 1

ωi

) ∏m
i<j

(
1
σi

− 1
σj

)

×
∞∑

k=0

∑
Ko

det

((
− 1

ωi

)k̃j
)

det

((
1
σi

)k̃j
)

det
(
λ

k̃j

i

)
(∏m

i=1 k̃i!
)

∆m(Ko) ∆m(Λ)
. (13)

Substituting (13) into (11) and simplifying yields

f(Λ) =
(−1)m(m−1)/2

det(Ω) det(Σ)∆m(Ω)∆m(Σ)

×
∞∑

k=0

∑
Ko

det

((
− 1

ωi

)k̃j
)

det

((
1
σi

)k̃j
)

det
(
λ

k̃j

i

)
∆m(Λ)(∏m

i=1 k̃i!
)

∆m(Ko)
.

(14)

Next, we substitute this into (10) to obtain

Fλm(x) =
(−1)m(m−1)/2

det(Ω) det(Σ)∆m(Ω)∆m(Σ)

×
∞∑

k=0

∑
Ko

det

((
− 1

ωi

)k̃j
)

det

((
1
σi

)k̃j
)

I(∏m
i=1 k̃i!

)
∆m(Ko)

(15)

where

I =

∫
D

det
(
λ

k̃j

i

)
∆m(Λ) dΛ . (16)

Omitting details, this integral can be evaluated as

I = xm(m+1)/2+k∆m(Ko)

m∏
i,j=1

(
1

k̃i + j

)
Γm(m) (17)

and, as such, (15) can be written as

Fλm(x) =
(−1)m(m−1)/2 Γm(m)xm(m+1)/2

det(Ω) det(Σ)∆m(Ω)∆m(Σ)

×
∞∑

k=0

∑
Ko

det

((
− 1

ωi

)k̃j
)

det

((
1

σi

)k̃j
)

m∏
i=1

g(k̃i) (18)

2Here we introduce the compact notation for the determinant of a ma-
trix, written in terms of the (i, j)th element. Also, for convenience we use
∆m(Ko) to denote ∆m(diag{Ko}).
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where

g(k̃i) =
xk̃i

k̃i!

m∏
j=1

(
1

k̃i + j

)
. (19)

We now apply the Cauchy-Binet formula [13] to give

Fλm(x) =
(−1)m(m−1)/2 Γm(m)xm(m+1)/2

det(Ω) det(Σ) ∆m(Ω) ∆m(Σ)

× det

( ∞∑
k=0

(
− 1

ωiσj

)k

g(k)

)
(20)

and perform some manipulations to remove the infinite sum, to give

Fλm(x) =
(−1)m Γm(m) det(Ω)m−1 det(Σ)m−1

∆m(Ω)∆m(Σ) (−x)m(m−1)/2

× det

(
e
− x

ωiσj P
(

m;− x

ωiσj

))
. (21)

This establishes the result for square matrices. To obtain the result
for rectangular matrices (i.e. for n < m), we follow the approach of
[9], and take limits of (21) as the eigenvalues ω1 → 0, . . . , ωτ → 0,
to obtain the desired result in (6). �

Note that a complete derivation will be presented in an extended
journal version of this paper.

Corollary 1 For the case n = 2, m = 2, (6) reduces to

Fλm(x) =
ω1ω2σ1σ2

x(σ2 − σ1)(ω2 − ω1)

2∑
i=1

(−1)i

×
2∏

j=1

(
e
− x

ω|i−j|+1σj +
x

ω|i−j|+1σj
− 1

)
. (22)

3.2. Probability Density Function (P.D.F.)

The following theorem presents the p.d.f. of the maximum eigen-
value of double-correlated complex Wishart matrices. This will be
used for deriving the p.d.f. of the output SNR of MIMO-BF in double-
correlated Rayleigh channels.

Theorem 2 Let X ∼ CNm,n (0m×n,Σ ⊗ Ω), where n ≤ m, and
Ω ∈ Cn×n and Σ ∈ Cm×m are Hermitian positive-definite ma-
trices with eigenvalues ω1 < . . . < ωn and σ1 < . . . < σm

respectively. Then the p.d.f. of the maximum eigenvalue λm of the
double-correlated complex Wishart matrix X†X is given by

fλm(λm) =
(−1)n+1Γn(n) det(Ω)n−1 det(Σ)m−1

∆n(Ω)∆m(Σ) (−λm)n(n−1)/2

×
(

n(n − 1) det(Ψ̃(λm))

2λm
+

m∑
�=τ+1

det(Ψ̃�(λm))

)
(23)

where Ψ̃�(λm) is an m × m matrix with (i, j)th element

(
Ψ̃�(λm)

)
i,j

=

⎧⎪⎨
⎪⎩

(
Ψ̃(λm)

)
i,j

for i 	= �

e
− λm

ωi−τ σj

ωi−τ σj
P

(
m − 1; −λm

ωi−τ σj

)
for i = �

(24)

and where
(
Ψ̃(λm)

)
i,j

is defined in (9).

Proof: The result follows by differentiating (6) with respect to x,
using a well-known formula for the derivative of a determinant. �
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Fig. 1. P.d.f. of the output SNR of MIMO-BF in double-correlated
Rayleigh channels, for γ̄ = 0 dB. Correlation parameters are θr =
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4. STATISTICAL CHARACTERIZATION OF MIMO-BF
OUTPUT SNR IN DOUBLE-CORRELATED CHANNELS

We now characterize the statistics of the SNR of MIMO-BF. Con-
sider the case Nr ≥ Nt where Theorems 1 and 2 apply, with X, n,
m, Ω, and Σ corresponding to H, Nt, Nr , S, and R respectively3 .
Using (5), and making a simple change of variables to (23) we obtain
the p.d.f. of γ given by

fγ(γ) =
ΓNt(Nt) det(S)Nt−1 det(R)Nr−1

(−1)Nt∆Nt(S) ∆Nr (R)

(
− γ̄

γ

)Nt(Nt−1)/2

×
⎛
⎝Nt(1 − Nt) det

(
Ψ̃

(
γ
γ̄

))
γ̄

2γ
+

Nr∑
�=τ+1

det

(
Ψ̃�

(
γ

γ̄

))⎞
⎠ .

(25)

The outage probability of MIMO-BF is defined as the probability
that the SNR γ drops below a certain threshold γth, and hence is
obtained directly from the c.d.f. of γ. Using (6), we evaluate this
c.d.f. as

Fγ(γth) = Pr(γ ≤ γth) = Fλm

(
γth

γ̄

)

=
ΓNt(Nt) det(S)Nt−1 det(R)Nr−1 det

(
Ψ̃

(
γth
γ̄

))
(−1)Nt ∆Nt(S) ∆Nr (R)

(
− γth

γ̄

)Nt(Nt−1)/2
. (26)

5. NUMERICAL RESULTS

Fig. 1 shows the p.d.f. of the output SNR of MIMO-BF with various
antenna configurations in double-correlated Rayleigh channels. The
channels are constructed based on the correlated model from [10].
The analytical curves are based on (25), and clearly agree with the
Monte-Carlo simulated p.d.f.s. Moreover, we observe that both the
mean and variance of the SNR increase with the number of antennas.

Fig. 2 shows the (analytical) p.d.f. of the output SNR, compar-
ing various correlation scenarios. We see that for 4 × 4 antennas,

3Note that all the results in this section apply directly to the other case of
Nr < Nt, simply by swapping Nt and Nr , and also S and R.
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Fig. 2. P.d.f. of the output SNR of MIMO-BF in various double-
correlated Rayleigh channels, for γ̄ = 0 dB.
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extra correlation increases the spread of the SNR around the mean.
This agrees with previous observations for semi-correlated channels,
given in [6]. For the 2×2 case, the correlation clearly has less effect.

Fig. 3 shows the outage probability of MIMO-BF, with the same
antenna and correlation parameters as for Fig. 1. The analytical
curves are based on (26), and agree precisely with Monte-Carlo sim-
ulated curves. We see that the outage probability is significantly
improved as the number of antennas are increased.

Fig. 4 shows (analytical) outage probability curves, comparing
different correlation scenarios. We see that for both antenna config-
urations, the correlation increases the outage probability at low SNR
thresholds, and decreases the outage probability (thereby improving
system performance) at high SNR thresholds. This agrees with pre-
vious semi-correlated results from [6]. Moreover, we see that the
cross-over point of the different correlated curves occurs at lower
outage probabilities as the numbers of antennas increase.

6. CONCLUSION

We have presented exact closed-form expressions for the p.d.f. of
the output SNR as well as the outage probability of MIMO-BF with
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Fig. 4. Outage probability of MIMO-BF in various double-
correlated Rayleigh channels, for γ̄ = 0 dB.

MRC in double-correlated Rayleigh channels. Based on the analyti-
cal results, we examined the effect of spatial correlation on the SNR.
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