
Multi-Band Speech Enhancement for Functional MRI

V. Ramachandran
(1)

, I. M. S. Panahi
(1)

, Y. Hu
(1)

, P. C. Loizou
(1)

, R. W. Briggs
(2)

, S. R. McCaslin
(3)

Department of Electrical Engineering, The University of Texas at Dallas, Richardson, Texas
(1)

Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas
(2)

National Instruments Inc., Austin, Texas
(3)

ABSTRACT

We present an adaptive enhancement method for speech

signal corrupted by the 3 Tesla (3T) functional Magnetic

Resonance Imaging (fMRI) acoustic noise. The noisy

speech signal is filtered into several frequency bands and 

noise cancellation is applied to each band independently.

We use Normalized Least Mean Squares (NLMS) algorithm

for updating the co-efficients of the adaptive filters in both

wideband and in multi-band implementations. The NLMS

algorithm is used to ensure faster convergence and stability.

The multi-band method shows a better performance than the 

conventional wideband method resulting in a better noise

reduction. It is shown that the distortion introduced by the

band-pass filters limits the overall speech enhancement

when the number of bands increases beyond an optimal

value.

1. INTRODUCTION

MRI instruments allow noninvasive mapping of structure

and function in the intact human body and are used regularly

for diagnostic and research studies. During fMRI scans,

researchers often need to communicate with the subject to

give instructions and to monitor performance in language or

other cognitive tasks. However, the very high ( 130 dB)

acoustic noise, generated by the MRI scanner makes such

communication difficult [1]. This background acoustic noise

has to be removed or reduced for reliable communication.

The noisy signal can be acquired using a single sensor

(microphone) or multiple sensors (microphone array). In

speech enhancement, multi-microphone methods give a 

better Signal to Noise Ratio (SNR) than a single microphone

setup due to the availability of more information.

In this paper, we present two-channel speech

enhancement. The subject’s speech and background acoustic

noise produced by the scanner are recorded simultaneously.

The acoustic fMRI noise is wide-band non-stationary signal

whose amplitude, frequency, phase, and propagation

velocity vary with time. Therefore the speech enhancement

system must be adaptive to be able to adjust to these 

variations.  Adaptive speech enhancement using a sub-band

approach for Gaussian noise has been studied in [2].

Acoustic control of noise has been discussed in [3–5]. The

multi-band filtering approach taken in this paper

decomposes the wideband input signal into an optimum

number of band-limited signals and applies NLMS

algorithm to obtain improved speech enhancement.

Improvement in the speech quality using fixed multi-band

filters [6] has motivated our work. We analyze this

approach and adapt it to obtain an optimum number of 

multi-band filters for the speech enhancement in a 3T fMRI

scanner system.

Section 2 gives a brief description of the method for

recording fMRI noise in real-time. In Section 3, we present 

the multi-band method for speech enhancement. Section 4

shows the simulation results that were obtained for the

proposed method with an optimum number of multi-band

filters.

2. ACQUISITION OF fMRI NOISE

We recorded the fMRI noise from a Siemens 3T Magnetom

Trio. The block diagram of the experimental setup for data

acquisition is shown in Fig.1. A diffuse-field microphone

(designed to have flat response when signal arrives

simultaneously from all the directions) was used for

measurement of the acoustic noise. A pre-amplifier

amplifies the microphone outputs and the signal was

conducted through 10 meters of shielded BNC cable to

custom bias voltage power supplies located in the control

room. The diffusion type microphone used a 12V power

supply. The cable shields were tied to the power supply

ground. One-minute segments of the amplified microphone

output were digitized at 16 kHz with a National Instruments

PCI 4472 A/D board and streamed to the hard disk of a 

Windows XP computer running LabVIEW 7.0.

Fig. 1. Experimental setup for fMRI noise acquisition

3. MULTI-BAND FILTERING

Fig. 2 shows the block diagram for general two-channel

enhancement. The desired speech signal s(n) is assumed to

be present in only one channel corrupted by the background

noise b’(n).The second channel has the reference noise

signal b(n). The adaptive filter tries to model the transfer

function, P(z) between the two inputs. The filter output y(n)
becomes an estimate of only the noise present in d(n) and

the output e(n) becomes an estimate of s(n).
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Fig. 2. Two-channel speech enhancement

Fig. speech

enhancement using multi-ba  filtering. Band-pass filters

with

e spectral dynamic range is greatly reduced in each of the 
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 non-overlapping frequency responses {Hm, m = 1, 2,…,
M} partition the noisy speech signal and the reference noise

signal into band-limited signals {dm} and {bm} respectively. 

The adaptive filter Wm(z) tries to model the differential

transfer function between dm and bm. Thus the filter output,

ym becomes an estimate of the noise present in dm. The sum

of all the em is the recovered speech signal which is the

estimate of s(n). As the number of samples increases, the

LMS filters estimate the differential transfer functions better

reducing the background noise and thereby improving the 

speech quality.

Fig. 3. Two-channel speech enhancement with Multi-

banding

Faster convergence is possible in multi-bands because

th

fre uency band improving the performance for broadband

noise signals. Alternatively, the use of multi-band

processing for speech enhancement allows diverse

processing in each band depending on signal power, noise

power and level of coherence between signal and noise in

the two channels.  The simplest and the most commonly

used algorithm for updating filter coefficients is the Least

Mean Square (LMS) algorithm proposed by Widrow, et al 

[7]. A detailed literature study can be found in [8] and [9]. 

The block diagram of a system that uses LMS algorithm is

shown in Fig. 4.

Fig. 4. Block diagram of a system that uses LMS algorithm

In the LMS algorithm, the coefficients of the digital

filter W(z) are updated as, 
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4. SIMULATIONS

Five sentences uttered by ma  speakers and five sentences

uttered by female the NOIZEUS1

oisy speech corpus) database were used to evaluate the 

Fig. 5. Frequency spectrum of fMRI noise

re  is the

le

speakers taken from

(n

proposed method. The original wideband signals sampled at 

25 kHz were used in the evaluations, after downsampling

them to 16 kHz. T1he fMRI noise (recorded from the 3T

Siemens Trio) modified by the transfer function P(z) is

added to the speech. The frequency spectrum of the fMRI 

noise, sampled at 16 kHz, is shown in Fig. 5.

1 Available at : http://www.utdallas.edu/~loizou/speech/noizeus
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Fig. Fro e no  SNR

The Signal to Noise Ratio (SNR) is calculated as follows,

SNR = 10 log(S/E) dB  (3)

where S is the clean speech signal power and E is the error 

noise power.

The SNR of the noisy speech signal is chosen as -10 

dB. In the calculation of the SNR using (3), E refers to the

fMRI noise power. The time waveforms of the noisy and

clean speech signals are shown in Fig. 6. We have used the

25-pole IIR filter given in [5] for the acoustic path mode

or

ced) to high ener  (voiced) or vice versa in the

speech signal, the step size (µ) changes drastically in the

case of the conventional LMS algorithm. This can cause the

to become unstable. So we used an adaptive filter that 

the NLMS algorithm for speech enhancement. In 

S algorithm, the step size is normalized by the energy

of the input speech signal. This makes the filter immune to

the fluctuations in the signal power.  In the simulation, an

FI ilter le th 7 l th ran r

fun ter

coe ed

usin

6. m th top, isy speech signal of -10 dB  and 

clean speech signal

l

P(z). The frequency response of P(z) is shown in Fig. 7.

 Fig. 7. Frequency response of the primary path, P(z)
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iunvo gy

filte

use
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R f of ng 0 was edus to mode e t sfe

ction P(z).  The step size used for updating the fil

fficients was 0.01. The recovered speech signal obtain

g the Conventional NLMS (CNLMS) algorithm is

shown in Fig. 8.

In calculating (3) for the speech enhancement, E

represents power of the difference between the clean and the 

recovered speech signals. The initial convergence period of

2 seconds (32000 samples) was discarded when calculating

the SNR. SNR improvement (in dB) refers to the difference

between the SNR of the recovered speech signal and SNR of

the original noisy speech signal.
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Fig. 8. Recovered speech signal (CNLMS)

he noisy speech signal and

the reference noise signal are filtered into M different 

frequency bands using linear phase FIR filters. All the filters 

were chosen to have the same order so as to have equal

delay in all the frequency bands. Noise reduction was done

independently in each of the bands using an FIR adaptive

filter of 2, 4, 7 

and 8 bands are shown in F he SNR improvement

was

The recovered speech signal has an SNR of 10.3 dB

i.e., an SNR improvement of 20.3 dB is observed when

single band NLMS algorithm is used.

We partitioned the frequency spectrum (ranging from 0

to 8000 Hz) into M bands linearly. In our case, we have

chosen M = 2, 4, 7 and 8 bands. T

order 70. The recovered speech signals for

ig. 9. T

calculated for all the 10 sentences. Average SNR 

improvement obtained for varying number of bands is

tabulated in Table 1. 
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Fig. 9. Recovered speech signals

(From the top, NLMS with 2, 4, 7 and 8-band filters) 

Number of bands Average SNR improvement

(dB)

1 21.13

2 23.93

4 25.66

7 22.61

8 22.14

Table 1. Multi-band filtering – Performance comparison
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We observe from Table 1 that the SNR does not

improve for a higher number of bands. This is because of 

the distortion introduced by the frequency-partitioning

filters. Error noise, E consists of two components; the

residual noise and distortion.  As the number of filters

increases, the e reduction

in t

The adaptive filters were trained using 32000 samples

of fM note

samples of the residual noise. To fi istortion

variance, the an speech signal s(n) was filtered using the 

multi-band filters and the filter outputs were added to get

s’(n). The distortion variance, D is calcula

distortion increases. This causes th

he SNR.

RI noise. Let R de the variance of the last 1500

nd the d

cle

ted as,

2||)(')(||
1

nsns
L

D  (4)

w

of s

b

Average noise Average distortion

here ||.|| denotes the norm of the signal and L is the number

amples.

Average noise variance, Ravg was calculated for 10

segments of fMRI noise and average distortion variance,

Davg was calculated for the 10 sentences. Table 2 shows the

Ravg and the Davg for varying number of bands.

Number

of ands variance, Ravg(X 10-4) variance, Davg

1 7.78 0

2 3.62 0.32

4 1.22 0.81

7 1.30 8.90

8 1.11 13.5

Table 2. comparisonResidual noise and distortion

M = 4, i.e., both the noise variance and the

dist

ptive speech enhancement shows a

prov onvent d.

th n de rall

SNR or a larger of bands. We fi  that four

linearly-spaced frequ bands are adequate in obtaining 

goo peech quality  it is corrupted by T fMRI-

scanner noise.

p
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From Table 2, we see that the best performance is

obtained for

ortion variance are low compared to the other bands.

5. CONCLUSION

The multi-band ada
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Fig 10. From the top, spectrograms of clean speech, noisy

speech and recovered speech (using 4-band NLMS) signals
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