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ABSTRACT
This paper deals with the problem concerning the framework

of rotating machines diagnostics by using signal processing

advanced tools and more precisely Blind Source Separation

(BSS) methods. An application on gear box is given, the

objective is to separate gear mesh signals corresponding to

each reducer’s wheel. It enables us to diagnose and separate

each defect in the event of degradation. The proposed method

exploits the information redundancy around the meshing fre-

quency and its harmonics resulting from cyclostationarity prop-

erties. This redundancy allows us to separate the contribution

of each wheel from only one sensor, by tacking advantage

of the non-uniformity of the Mechanical Structure Frequency

Response (MSFR) connecting the exciting source to the sen-

sor.

Key words: Mechanical Structure Frequency Response, Blind

Source Separation, Cyclostationarity, Diagnostics.

1. INTRODUCTION

The aim of the vibratory analysis is to detect mechanical sys-

tems’ defects early in order to monitor machines. Three phases

can mainly be distinguished : acquisition, signal processing,

decision-making. Our work concerns the signal processing

phase and more particularly the source separation techniques,

to separate different contributions in the signal in order to

extract information about faulted elements of the machine.

Moreover, this can be combined with the exploitation of the

cyclostationarity property of the vibratory signal of rotating

machines [1]. It’s worth emphasizing that in the literature,

vibratory sources separation received less attention owing to

the complexity of the problem (Non stationarity of the signals

and convolutive nature of the vibratory mixtures). One of the

possible solutions to this last constraint is to reduce the con-

volutive temporal mixture to a set of instantaneous complex

mixture for each frequency bin inside the frequency domain

([2], [3] and [4]). In this communication, we tackled the gear

signal separation problem in the temporal domain by working

with bandpass filtered signals centered on the meshing fre-

quency harmonics. Thus we assume that the mixture of the
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reducer’s two wheels signals in each band is instantaneous.

Contrary to other BSS methods that use spatial diversity, we

use only one physical sensor but we take advantage of fre-

quential diversity. Many artificial sensors are generated by

the demodulation of a bandpass filtered versions of the phys-

ical sensor signal. The bandpass filter is centered around one

of the meshing frequency harmonics. Each artificial sensor

is a different observation due to the different local weighting

in each band by MSFR. Spectral redundancy resulted from

cyclostationarity property [5] guarantee a certain coherence

between each artificial sensor. This paper proceeds as fol-

lows. Sections 2, 3 and 4 present a survey and two algorithms

of instantaneous BSS. Section 5 is devoted to describing the

details of the proposed method. In section 6 we explain the

separation result. Ultimately, in section 7 we conclude our

study and also we introduce some perspectives.

2. REMINDER ON THE SEPARATION OF
INSTANTANEOUS SOURCES

The problem of instantaneous blind source separation in a

general context can be summarized in the estimation of the

useful information s(t) (that have weighed sums in the trans-

mission channel) in noise-contaminated observation x(t). BSS

is based only on the records of sensor signals (spatial diver-

sity) whose number m is greater than or equal to the number

of source signals n and the strong assumption of the statisti-

cal independence of the sources. Finally, we consider that we

have at most one Gaussian source, in order to be able to re-

store the primary signals. The instantaneous BSS model that

bind the jth observation xj(t) and the ith source si(t) can be

written as :

xj(t) =
n∑

i=1

ajisi(t) + b(t), (j = 1, 2, · · · ,m) (1)

Or in the matrix notation :

x(t) = As(t) + b(t) (2)

where

• s(t) = [s1(t), s2(t), . . . , sn(t)]T contains the n un-

known sources.
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• x(t) = [x1(t), x2(t), . . . , xm(t)]T represents the m ob-

servations or sensors .

• aj = [aj1, aj2, . . . , ajn]T is the directional vector (or

signature) associated with the source j.

• A = [a1, a2, . . . , an] is an unknown full rank m × n
mixing matrix.

• b(t) is the noise vector, assumed to be zero-mean, sta-

tionary, Gaussian and spatially white.

The objective of the BSS is to estimate the source signals even

if they are not statistically independent, while the goal of the

Independent Component Analysis (ICA) is to make transfor-

mations on the sensors so that the output signals are as inde-

pendent as possible. The BSS methods have a tendency to use

only Second order statistics (SOS) and work with Gaussian

signals. The ICA methods use often Higher-order statistics

(HOS) and can not be applied to Gaussian signals. Other

methods, known as semi-blind, exploit a priori knowledge of

the sources, even if very weak. This information can lead to

simpler and very powerful algorithms. One can exploit a pri-

ori information on the probability distribution of the sources.

Other forms of diversity are exploitable [6] like the frequen-

tial diversity which allows us to write as many different equa-

tions as there are frequency bands. Here we exploit the fre-

quential diversity and a priori knowledge. In the present paper

we have chosen to test two source separation algorithms, one

based on SOS and the other on HOS. Both algorithms that

we will present hereafter articulate on two distinct phases :

whitening [7] and joint diagonalization. [7][8][9].

3. ALGORITHM SOBI

If the source signals have temporal structure, it is possible to

separate the different signals by using a set of covariance ma-

trices. As its name indicates SOBI (Second Order Blind Iden-

tification) [7] is a blind identification algorithm based on SOS.

It uses a set of covariance matrices of whitened processes at

different lags. The aim is to find a unitary matrix where the

column vectors constitute an orthonormal basis. This latter

gathers the set of the eigenvectors that simultaneously and

jointly diagonalizes the set of covariance matrices. Thus it

has the property to form a vectorial subspace, in spite of the

degeneration of certain eigenvalues associated with some ma-

trices from the set of covariance matrices.

4. ALGORITHM JADE

The independence condition imposes constraints on the possi-

ble choice of separation algorithms. The decorrelation (Prin-

cipal Component Analysis) is far from ensuring this indepen-

dence except for the Gaussian signals case. For a better de-

scription of independence, many criteria are based on fourth-

order cummulants. Of course, the cancellation of the higher-

order cross cummulants is a consequence of sources indepen-

dence. When the signals sources do not present temporal

structure, or when they have identical standardized spectra,

it is not possible to use only SOS to carry out the separa-

tion of sources. One has recourse to statistics of an order

higher than two. In these cases, it’s necessary to assume that

sources must have non-Gaussian distributions. JADE (Joint

Approximate Diagonalization of Eigen-matrices) [8] belongs

to the orthogonal techniques, i.e. it combines the information

of second order and higher-order. The SOS are used for the

whitening, and the Joint Approximate Diagonalization of the

eigen-matrices to find unitary matrix. The statistical effec-

tiveness is envisaged to increase by using at the same time the

SOS and HOS, see [10], [11] and [12] for more details.

5. THE PROBLEM STATEMENT

We are interested on the separation of gear mesh reducer sig-

nals. The gears are composed of two toothed wheels R1

and R2, (N1 and N2 teeth) and rotate at the speed n1 and

n2 rpm, (i.e. F1 and F2 Hz). The gear mesh is run at the

rhythm of gear tooth engagement at the meshing frequency :

FE = N1 ×F1 = N2 ×F2. In the case of a healthy operation

(correct teeth, normal condition of use), vibratory signal se(t)
consists of lines spectrum spaced by the meshing frequency

"Fig. 1". The gear mesh signal sc(t) is modulated by each

wheel s1(t) and s2(t) ([1] and [13]):

se(t) = sc(t)(1 + s1(t) + s2(t))

"Fig. (1 and 2)" below shows the nonuniform frequency dis-

tribution : the shape of the gear mesh spectrum displays the

influence of the mechanical structure (whose the impulse re-

sponse is h(t)) which connects the physical sensor to the ex-

iting source. "Fig. 2", is a zoom to represent better the influ-

ence of the MSIR on the spectrum, one can see a resonance

in the vicinity of 2FE :

y(t) = se(t) ∗ h(t) + b(t) (3)

while y(t) is the accelerometer vibratory signal.

When a tooth’s defect appears on one of the two wheels, the

associated sidebands amplitudes will be increased.In our ex-

perimentation (reducer N1 = 20, N2 = 21 teeth), the fre-

quencies brought into play are very close F1 = 16.66Hz
(1000rpm) and F2 = 15.86Hz (952rpm). Therefore, the

modulating signals s1(t) and s2(t) appear superimposed in

the spectrum, a bandpass filtering does not manage to iso-

late them. We propose to use the well-known source sepa-

ration algorithms [14] evoked previously. The system inputs

come only from one sensor. In fact, in classical BSS the spa-

tial diversity is of primary importance to make a success of

separation. Admittedly. In our problem we have only one

sensor, but the collected signal y(t) is obviously rich in a pri-

ori information (Cyclostationarity, MSFR), that will enable
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us to compensate the spatial diversity. Thus, to make obser-

vations that contain only frequential components correspond-

ing to the two wheels, we begin by isolating the frequency

bands at the meshing frequency FE and its multiples by the

means of bandpass filters. Then, we demodulate around the

meshing frequencies "Fig. 3", in order to generate several ob-

servations (sensors) x1(t), x2(t), . . . xj(t), . . . , xm(t) while

xj(t) = TF−1(Xj(ν)). Thereafter, one consider each ob-

servation {xj(t), j = 1, 2, . . . , m} as being a sensor. The

operation of demodulation (after a series of bandpass filtering

around the gear mesh harmonics) makes possible the simpli-

fication of "(3)", in order to take into account only the signals

corresponding to the two wheels. Mechanical structure im-

pulse reponse h(t), generates a ’spatial’ diversity between the

different harmonics of the gear meshing frequency "Fig. 3".

This last remark allows us to solve the problem :

x(t) = s(t) ∗ h(t) + b(t) (4)

while s(t) = [s1(t), s2(t)]T comprises source signals of the

wheels R1 and R2. A local examination of the amplitude

gain associated with each wheel frequency at different mesh-

ing frequency harmonics reveals a local stationarity, therefore

one can assume that the linear mixture of the two sources (the

Fig. 3. Illustration of the gear power spectrum as well as the

amplitude and frequency modulation.

signal of the entry wheel and the signal of the wheel at exit)

is an instantaneous mixture, i.e. the model described by the

following equation :

xj(t) =
2∑

i=1

hjisi(t) + b(t), (j = 1, 2, · · · ,m) (5)

while hji is the local effect of the MSIR on the source si.

In the vectorial form :

x(t) = Hs(t) + b(t) (6)

while H = [h11, h12; h21, h22] is the mixing matrix.

Furthermore, it should be noted that we assume that the two

sources are statistically independent and jointly uncorrelated

to the noise.

6. SEPARATION PART

At this stage, we can dealt with the signals. In our experi-

mentation, we are being restricted to m = 3 or even 5 sen-

sors. To evaluate the separation quality of SOBI and JADE,

one can compute the ratio of frequency values corresponding

to the peak of each estimate and see if it’s equal to the ratio

of the two wheels’ teeth number i.e. 20/21 = 0, 95. "Fig. 4"

represents the power spectral densities of a specimen of the

three sensors and both of the two wheels signals estimates.

On the first harmonic the separation is not possible due to the

weak frequential resolution. On the second harmonic we can

see that we have separated the source at 2F1 from the source

at 2F2 (different peak position) on the source spectrum with

JADE and SOBI. The ratio of the frequencies values taken

on "Fig. 4" corresponding to each peak estimate give a value

about 0.96, which is within 0.01 to the true ratio. Further-

more, in our case the separation quality at SOBI output is bet-

ter, because of the small number of average compared with

JADE.
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Fig. 4. Separation result.

7. CONCLUSION AND OUTLINES

In this article, we saw the implication of the MSFR and the cy-

clostationarity in the source separation process starting from

only one sensor. Of course, the frequential diversity and the

different local signatures of the MSFR gave rise to spatial di-

versity, which authorizes the use of BSS to separate the sig-

nals of the two wheels. In the future, we consider the exploita-

tion of these tools, for the separation of the bearings and gear

mesh contributions, In order to locate the defects. In addition,

we project the exploitation of the cyclostationarity properties

to design criteria of separability and also to extend our study

to the convolutive mixtures.
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