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ABSTRACT

We discuss the off-line and on-line aspects of trajectory plan-
ning in bearings-only localization. Assuming that there are
m(≥ 1) moveable sensors (e.g. UAVs), which fly in closed
trajectories, the aim is to determine the optimal shape of the
trajectory. We investigate the properties of closed optimal
trajectories in the off-line problem and show that these so-
lutions are invariant under a scaling transformation of the
problem parameters. This result is used to numerically de-
rive a set of solutions for the normalized parameters. These
solutions are then used in a stochastic search algorithm which
randomly explores the trajectories but spends the largest
amount of time in the optimal trajectory.

1. INTRODUCTION

Consider a stationary target at an unknown location in a
known and bounded area. There are m(≥ 1) Unmanned
Aerial Vehicles (UAVs) available to locate this target. The
UAVs can move within the boundaries of this area under
certain constraints and collect noisy measurements from some
parameter that is related to the position of the target. We aim
to compute the optimal trajectory for each UAV from time
1 to N , Θi = {Xi

s(k)}N
k=1, where 1 ≤ i ≤ m such that at

the end of this period, a cost function reflecting the accuracy
of our estimation of the position of this target is optimized.
Formally stated, we are interested in

arg min
Θ1,··· ,Θm

g(E{[P − h(Z1:N (P,Θ1, . . . ,Θm))]T

[P − h(Z1:N (P,Θ1, . . . ,Θm))]})
subject to Θi ∈Ui for 1 ≤ i ≤ m,

(1)

where

• P is the position vector of the target. Following the non-
Bayesian approach [1], we assume P is a fixed and non-
random variable;
• Ui defines the set of constraints imposed on the trajectory
of the i-th sensor;
• Z1:N is the set of noisy measurements from all m UAVs
from time 1 to time N . Measurements are functions of P

and Θ1, . . . ,Θm. Expectation in (1) is taken with respect to
the probability distribution of Z1:N ;
• Function h is an efficient and unbiased estimator of P . It
is assumed that the mechanism by which measurements are
fused is given to us. Function g is a real-valued function
of its agrement. Since the covariance matrix can be multi-
dimensional, function g is mainly used to establish an order-
ing relation between the performance of various trajectories.
g can be the determinant, trace, the largest eigenvalue or an
element of the covariance matrix.

We note that in (1), P is not known so the full structure
of the cost function is not known to us and a closed-form
solution cannot be found. However, a relevant question to
ask is even if P is known, which trajectories are the solu-
tions of (1). The answer to this question leads to minimiz-
ing the Cramer-Lower Bound (CRLB) of estimation error
covariance. It should be pointed out that even finding an an-
alytical solution for this off-line optimization problem is not
feasible in most cases and one has to only rely on numerical
methods.

The results of the off-line optimization can be used in
a stochastic search method to solve (1) in real time if it is
ensured that the underlying process is stationary. In partic-
ular, we devise a modified version of the search algorithm
outlined in [2] for this purpose. The proposed algorithm is
such that while all candidate trajectories are explored ran-
domly, the largest amount of time is spent on travelling the
global optimal trajectory.

Bearings-only localization is one case in which sensor
trajectory planning is important. In bearings-only localiza-
tion, the target emits some kind of energy (sound, electro-
magnetic, etc.) to its surrounding environment and sensors
measure the angle of arrival of the signal and estimate the
relative range of the target. The problem of sensor trajectory
planning for bearings-only localization has been mainly stud-
ied in the literature as an off-line optimization problem [3, 4,
5]. We extend these results to the on-line optimization prob-
lem. This requires that the initial relative range of the target
from the sensor remains fixed at each iteration of the sto-
chastic search algorithm and therefore only closed trajecto-
ries are allowed. A prime example of the application of this
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method is for UAVs, which are equipped with monocular-
vision system and sent on a mission to monitor a target and
estimate its position.

This paper has four sections. In Section 2, the opti-
mization of the CRLB for closed trajectories is discussed,
where we show the optimal trajectory is invariant to a spe-
cial scaling transformation of the problem parameters and
derive the numerical result for the normalized parameters.
In Section 3, the stochastic search algorithm is discussed.
Finally, in Section 4, some concluding remarks are made.

2. OPTIMIZING THE CRLB FOR
BEARINGS-ONLY LOCALIZATION

We construct a coordinate system for the bearings-only lo-
calization problem following the arrangement shown in Fig.1.
The initial location of the sensor is defined as the origin.
The x-axis is defined as the initial direction of arrival of
the signal from the sensor and the y-axis is defined such
that a right-handed coordinate system is built. It is assumed
that the target is located at distance xt on the x-axis where
rmin < xt < rmax. During the observation period, the sen-
sor travels with its maximum speed V and its trajectory is
defined by a sequence of course inputs (see below for def-
inition). The sensor must return to the origin at end of the
observation period and cannot reach the target during the
observation period, therefore V ∆TN < 2rmin, where ∆T
is the sampling period. With this formulation, problem (1)
can be stated as follows for the bearings-only localization
problem using a single sensor. Find

arg min
Us

E{[xt − x̂t(Z
1:N (xt,Θ(Us)))]

2}, (2)

where
• Θ(Us) = {Xs(k)}N

k=1 = {[xs(k), ys(k)]T }N
k=1 is the

sensor trajectory with boundary conditions xs(0) = ys(0) =
xs(N) = ys(N) = 0. The trajectory evolves according to[

xs(k + 1)
ys(k + 1)

]
=

[
xs(k)
ys(k)

]
+V ∆T

[
cos us(k)
sin us(k)

]
, (3)

where Us = {us(k)}N
k=1 is the sequence of course com-

mands;
• x̂o is the estimator of xt;
• Z1:N (xt,Θ(Us)) = {z(k)}N

k=1 is the set of noisy bear-
ing measurements where bearing, β(k), is defined as the
angle that the line connecting the sensor to the target makes
with the x-axis

β(k) = atan2(0 − ys(k), xt − xs(k)), (4)

and z(k) is defined as
z(k) = β(k) + w(k), (5)

where atan2(y, x) is the arc tangent of y/x in the interval
[−π, π] and the sign of atan2 is determined by the sign of
y and {w(k)}N

k=1 is a sequence of zero mean independent
Gaussian noise with variance σ2

w.

O x

y

xtxs(k)

ys(k)
β(k)

rmin

Sensor

rmax

Fig. 1. The geometry of bearings-only localization.

In finding the optimal sensor trajectory for a given xt,
we assume that a Maximum Likelihood Estimator (MLE) is
used. From (5), we note that the probability density function
of Z1:N for a given xt is

p(Z1:N ;xt) =
N∏

k=1

1

σw

√
2π

exp(− (z(k) − β(k))2

2σ2
w

). (6)

The Cramer-Rao Lower Bound (CRLB) is defined as the
inverse of the Fisher Information Matrix (FIM) where the
FIM for a given sequence of course commands is defined as

J(Us) = E{[∂ ln p(Z1:N ;xt)

∂xt
]2}. (7)

With some extra work to combine (6) and (7), which is out-
lined in [6], a direct expression for J(Us) can be obtained
(see below). As a result, problem (2) is converted to the
following deterministic optimization problem. Find

arg min
Us

J(Us) =
−1

σ2
w

N∑
k=1

ys(k)2

[(xt − xs(k))2 + ys(k)2]2
,

(8)
where {[xs(k), ys(k)]T }N

k=1 satisfy the constraints stated
in (3). A continuous-time equivalent of (8) can be stated
as finding

arg min
Us

J(Us) =
−1

σ2
w

∫ Tf

0

ys(t)
2dt

[(xt − xs(t))2 + ys(t)2]2

subject to ẋs(t) = V cos(Us(t)), ẏs(t) = V sin(Us(t))

xs(0) = ys(0) = xs(Tf ) = ys(Tf ) = 0,

(9)

where Tf is the final time. Note that 0 and Tf in the con-
tinuous case correspond to 1 and N∆T in the discrete case,
respectively. Problem (9) has the form of classical problems
in optimal control theory and no analytical solution has been
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found for it. A solution is given in [3] for a rather simpler
problem with no constraint on the final position of the sen-
sor. Even for that case, a nonlinear root finding problem
must be solved to obtain an analytical solution. However an
important observation is made in [3] that the solution of (9)
is unique for a given parameter C known as the range-to-
baseline ratio. C is defined as

C = V Tf/xt. (10)

This is an important observation, since if one wants to rely
on numerical methods to solve (9), instead of working with
three different variables, mainly, V , Tf and xt, one needs
to only work with C. This important fact is stated infor-
mally in [3]. We give a complete proof of it in the following
proposition.

Proposition. If Us(ξ) satisfies the necessary conditions of
optimality in problem (9) for given values of xt, V and Tf ,
where ξ = t/Tf and 0 ≤ ξ ≤ 1, then Us(ξ

′) also satis-
fies the same optimality conditions for x′

t, V
′ and T ′

f , where
ξ′ = t/T ′

f , as long as C = V Tf/xt = V ′T ′

f/x′

t holds.

Proof. Problem (9) when reformulated as a function of ξ
has the following form

arg min
Us

J(Us) =
−Tf

σ2
w

∫ 1

0

ys(α)2dα

[(xt − xs(α))2 + ys(α)2]2

subject to ẋs(ξ) = V Tf cos(Us(ξ)),

ẏs(ξ) = V Tf sin(Us(ξ))

xs(0) = ys(0) = xs(1) = ys(1) = 0.

(11)

Let x′

s(.) and y′

s(.) be the optimal trajectory when the sec-
ond set of parameters, x′

t, V
′ and T ′

f , are used. We note
that

x′

s(ξ) =

∫ ξ

0

V ′T ′

f cos(Us(α))dα =
V ′T ′

f

V Tf
xs(ξ)

y′

s(ξ) =

∫ ξ

0

V ′T ′

f sin(Us(α))dα =
V ′T ′

f

V Tf
ys(ξ).

(12)

We can immediately see from (12) that if the boundary con-
ditions are satisfied for xs(.) and ys(.), they are also satis-
fied for x′

s(.) and y′

s(.). Next we note that the Hamiltonian
for the original set of parameters is

H = − Tf

σ2
w

ys(ξ)
2

[(xt − xs(ξ))2 + ys(ξ)2]2
+

λ1(ξ)V Tf cos(Us(ξ)) + λ2(ξ)V Tf sin(Us(ξ))

(13)

where λ1 and λ2 are the adjoint states satisfying

λ̇1(ξ) = − ∂H
∂xs

=
Tf

σ2
w

4ys(ξ)
2(xt − xs(ξ))

[(xt − xs(ξ))2 + ys(ξ)2]3

λ̇2(ξ) = −∂H
∂ys

=
Tf

σ2
w

2ys(ξ)(xt − xs(ξ))
2 − ys(ξ)

3

[(xt − xs(ξ))2 + ys(ξ)2]3

0 =
∂H
∂Us

= V Tf (−λ1 sin(Us(ξ)) + λ2 cos(Us(ξ))).

(14)

Now, let λ′

1 and λ′

2 be the adjoint states of the secondary
problem. In this case for λ′

1, we have

λ̇′

1(ξ) =
T ′

f

σ2
w

4y′

s(ξ)
2(x′

t − x′

s(ξ))

[(x′

t − x′

s(ξ))
2 + y′

s(ξ)
2]3

= (
V ′T ′

f

V Tf
)1/3

T ′

f

σ2
w

4ys(ξ)
2((

V Tf

V ′T ′

f

)x′

t − xs(ξ))

[((
V Tf

V ′T ′

f

)x′

t − xs(ξ))2 + ys(ξ)2]3

= (
V ′T ′

f

V Tf
)1/3

T ′

f

σ2
w

4ys(ξ)
2((xt − xs(ξ))

[(xt − xs(ξ))2 + ys(ξ)2]3

= (
V ′T ′

f

V Tf
)1/3λ̇1 = Bλ̇1,

(15)

where in the second and third line, we have used (12) and
the assumption of the proposition, respectively. Similarly,
we can show λ̇′

2(ξ) = Bλ̇2. Now by letting λ′

1(ξ) � Bλ1(ξ)
and λ′

2(ξ) � Bλ2(ξ), it follows from (14) that

0 = V ′T ′

f (−λ′

1 sin(Us(ξ)) + λ′

2 cos(Us(ξ)). (16)

Hence, from (12), (15) and (16), we can see that x′

s(.), y
′

s(.),
λ′

1(.), λ
′

2(.) and Us(.) satisfies all the boundary and optimal-
ity necessary conditions for the secondary problem.

By the application of the above proposition, numerical
methods such as the method of steepest descent [7] can be
utilized to find the numerical solutions of (9) for various
values of C. These results are shown in Fig. 2. Note that
in this figure, the value of C varies between 0 and 2 by
changing the value of xt. When C = 2, it means that if the
sensor travels along the x-axis, it can reach the target and
return to the origin by the end of the observation period. The
results of Fig. 2 also suggest that the optimal trajectories can
be approximated by a straight line. In other words, one can
solve (11) for the following input

Us(ξ) =

{
φ 0 ≤ ξ ≤ 1/2
φ − π 1/2 < ξ ≤ 1.

(17)

This will lead to a nonlinear root finding problem of which
the answers are entered in Fig. 2 for the given values of C.
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3. STOCHASTIC SEARCH ALGORITHM FOR
BEARINGS-ONLY LOCALIZATION

Our stochastic search algorithm generates a Markov chain
that spends most of its time at the optimal trajectory. The
algorithm randomly selects one of the trajectories in Fig. 2.
The sensor then travels this trajectory l times where l > 1.
At the end of each trip, the MLE estimates xt. After l
times, the algorithm computes the sample variance of x̂o

for the travelled trajectory. Then another trajectory is se-
lected and the sample variance for the new trajectory is com-
puted. In the next step of the algorithm, whichever tra-
jectory that had a lower sample variance in the previous
step competes against another randomly selected trajectory
among the family of trajectories including the winner tra-
jectories. This way, at the cost of slower convergence, the
search algorithm spends more time near the optimal solu-
tion and a trade-off can be made between exploitation and
exploration. Overall, the This algorithm can be stated for-
mally as follows.
Step 0: Let P = {1, 2, . . . ,P} be the set of indices, each
referring to one trajectory. Select a trajectory p(0) ∈ P .
Let N (p(0)) = 1 and N (n) = 0 for all n ∈ P and n �=
p(0). Let m = 0 and p∗ = p(0), where m represents the
number of iterations of the algorithm and p∗ is the index to
the optimal trajectory found by the algorithm. Go to step 1.
Step 1: Select another random trajectory q(m) such that
q(m) = p(m) with probability R

Q and q(m) = n, for all

n ∈ P and n �= p(m), with probability 1
Q , where Q =

P − 1+R and R is a chosen positive number. Go to step 2.
Step 2: Compute the sample variance of x̂o for both p(m)
and q(m). If σ2

q(m)(x̂o) > σ2
p(m)(x̂o), then let p(m + 1) =

q(m). Otherwise, let p(m + 1) = p(m). Go to step 3.
Step 3: Let m = m + 1 and N (p(m)) = N (p(m)) + 1. If
N (p(m)) > N (p∗), then let p∗ = p(m). Go to step 1.

We point out that the exploitation phase can occur in
step 1 when q(m) = p(m). Similar to the proof in [2], it can
be shown the above algorithm converges almost surely to
the optimal solution as long as the three assumptions stated
there on the stochastic ordering of the candidate trajecto-
ries are stratified. We have not yet shown these assumptions
hold for bearings-only localization but our simulation re-
sults show that the above algorithm usually converges to the
optimal solution after 50 iterations when 8 to 10 trajectories
are used with σ2

w = (π/180◦)2.

4. CONCLUSIONS

In this paper, we outlined a method for real time trajectory
planning in bearings-only localization. By taking closed tra-
jectories, it is ensured that the sensor does not ”lose” the tar-
get by taking non-optimal trajectories in the absence of any
information about the position of the target. Additionally if

x

y

C = 0.125
(φ = 85◦) C = 0.375

(φ = 74◦) C = 0.625
(φ = 63◦)

C = 0.875
(φ = 52◦)

C = 1.125
(φ = 41◦)

C = 1.375
(φ = 30◦)

C = 1.625
(φ = 18◦)

C = 1.875
(φ = 6◦)

Fig. 2. Closed optimal sensor trajectories initiated and
ended at the origin for various values of C.

time is given, the sensor can eventually loop in the optimal
trajectory and continuously monitor the target.

5. REFERENCES

[1] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation
with Applications to Tracking and Navigation. John
Wiley & Sons, 2001.

[2] S. Andradottir, “A global search method for discrete
stochastic optimization,” SIAM Journal of Optimiza-
tion, vol. 6, no. 2, pp. 513–530, 1996.

[3] S. E. Hammel, P. T. Liu, E. J. Hillard, and K. F. Fong,
“Optimal observer motion for localization with bearing
measurements,” Computers and Mathematics with Ap-
plications, vol. 18, no. 1-3, pp. 171–180, 1989.

[4] Y. Oshman and P. Davidson, “Optimization of ob-
server trajectories for bearings-only target localization,”
IEEE Transactions on Aerospace and Electronic Sys-
tems, vol. 35, no. 3, pp. 892–902, 1999.

[5] E. W. Frew and S. M. Rock, “Trajectory generation for
monocular-vision based tracking of a constant-velocity
target,” in Proc. of IEEE International Conference on
Robotics and Automation, Taipei, Taiwan, 2003, pp.
3479–3484.

[6] A. Farina, “Target tracking with bearings-only measure-
ments,” Signal Processing, vol. 78, no. 1, pp. 61–78,
1999.

[7] D. E. Kirk, Optimal Control Theory: An Introduction.
Prentice Hall, 1970.

III  1199


