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ABSTRACT We propose an approach that uses wavelet transform-

based multiscale decomposition. The wavelet transform

generates several sub-images from an input image at

multiple levels. Thus more information is available from a 

single image to estimate the scale change. Furthermore,

the wavelet transform has the ability to detect multiscale

edges of an object in an image. The distribution of the

multiscale edges is a function of the size of the target, and

it can be used for detection of scale changes between two 

target images in different frames.  At this time, the

algorithm has been tested on synthetic and tabletop

experimental data.

The paper presents a passive ranging method for 

estimating distances to an object using a video sequence 

gathered from a moving platform. The motivation is

provided by potential application to object distance

estimation using video data from general aviation aircraft. 

The method exploits scale changes of an object in the

video sequence, as inferred by processing wavelet

transforms of video frames, to compute distance. The 

underlying principles are presented along with results of

bench experiments.

Figure 1.  Computation of the distance from scale 

change and flight distance. 
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1. INTRODUCTION 

It is desirable to enable pilots flying general aviation (GA)

aircraft under visual flight rules (VFR) to estimate

distances to objects such as clouds and mountains with

more accuracy than that afforded by guesswork, the main

approach available currently. Unlike commercial and

high-end aircraft, GA aircraft are not equipped with

sophisticated ranging equipment [1]. With video

equipment on board, there is the potential to use changes

in scale of objects in the captured video frames to estimate

these distances. The basic principle is given by the heights

and distances problem of trigonometry.  Given the angular

dimension of an object from a certain position, the change 

in dimensions resulting from relative movement of a

known distance can be used to estimate both the extent of

the object and the distance. By estimating the change in

dimensions of the target images, it is possible to calculate

the distance from the aircraft to the target with knowledge

of distance traversed. Change of the size of target images

in multiple frames has previously been proposed by Van

Rheeden [2] for generic distance estimation. In [2], the

size of a target is estimated from the target image

associated with target information from a database

integrated in the system. The algorithm measures the 

instantaneous horizontal and vertical dimensions of the

detected target to decide the size of a target image. To

compensate for the possible errors caused by incorrect 

size determination of the target, the method uses a pre-

saved database of known targets. Therefore, if a target is

unknown a priori, the approach does not guarantee its

accuracy.

2. ALGORITHM DEVELOPMENT 

The key property of the wavelet transform we use is the

scaling property. Suppose ,F a b  is the continuous

wavelet transform (CWT) of a function f x with

respect to a wavelet x ,
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,, a bF a b f x x dx  (1) 
d

Here size refers to linear dimension. Then the distance d

from  to the target can be computed from1 s  and the

distance, or baseline, 0 1l d d  as

Figure 2. Test images, (Top)

original, and (Bot) scaled

image by s = 2

1

l
d

s
 (4) 

Let x

nW  and W  be the ny

n

th level coefficients along the x

and directions respectively, of an undecimated,

separable, orthogonal wavelet transform of an image

y

I

for 1 2n … N , where  is the total number of

decomposition levels. These wavelet coefficients contain 

the gradient information at each decomposition level. The 

magnitude of the gradient at a level n is computed as [4] 

N

2( ) ( )x y

n n nM W W 2  (5) 

We found the variance of the gradient distribution across

scales as providing a good indicator of object size. Sample

probabilities are obtained from the magnitude of the

gradient in (5) as

Figure 3 s
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where where 
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. Then the CWT

of , a scaling of f A f x  by A and shifting by

B, is equal to [3]

,F Aa A b B . (2)
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Using (6), the sample variances of multiscale edges along 

the x ,  directions are computed asyThus, the scaling in the argument of the function is

captured by the scale argument of the CWT. The scaling

property holds for two-dimensional CWTs as well. In

working with images, we propose to estimate scale

changes of a target using the undecimated wavelet

transform introduced in [4] since we cannot use the CWT.
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where
We now relate scale changes to distances. Let s  be the

scaling factor between target images detected in two

frames taken at two locations  and  as illustrated in

Figure 1, that is,

0d 1d
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size of target imageat tan

size of target image at tan

d
s

d
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Because we decompose an image up to  levels, we 

have  such variance data along each dimension.

N

N
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Average values of the variance [ ]x x nve VV a  and 

are used for computation of the scale factor [ ]y yV ave V n

s . Let 0xV  and 1xV be the averaged variances from

images 0I  and 1I  along the x  direction. V  and V  are 

also defined similarly for the y direction. Then scale factor 

0y 1y

xs  and ys for each axis between two images can be 

computed by

y y

2

x

1 0x x xs V V (11)

1 y0s V V (12)

Finally, the overall scale factor estimate is obtained as

ys s
s  (13) 

3. RESULTS

Demonstration of scaling factor estimation

The first experiment was implemented with two images

with different sizes shown in Figure 2. The second image

was generated with a known scaling factor s = 2 from the

first image. These images were decomposed into a 5-level

wavelet transform using a quadratic spline wavelet [4].

The variance of multiscale edges in each image was

computed using (7) through (10). Since we used N = 5, 

we have a total of 10 estimates ( = the number of

decomposition level multiplied by 2). Figures 3 and 4

show the estimated s values as a function of 

decomposition level n for x and y directions. The scaling

factor s was computed using (13). We obtained a value of

s = 1.9927, quite close to the true value of 2. 

Distance estimation of one object 

The second experiment is a tabletop experiment to test the

procedure on distance estimation with a real object. 

Although in practice one would use a video camera with

frames stamped by time and geolocation information, we

used a still camera since it was more convenient and since 

the intent was merely to test if the algorithm yielded

distance measurement. An object (cotton ball to simulate a 

cloud) was located at a fixed location and a camera moved

along the straight line in front of the object (Figure 5). 

Images were taken by the camera at locations . The 

images are shown in Figure 6. The object was separated

from the background using k-means clustering using k = 2

[5]. The object pixels were set to white and background

pixels were set to zero. A 5-level wavelet transform of

each image was computed. From the four locations we

could choose 6 paired combinations. Scale changes were 

then computed for each pair using (13).  Distance was 

computed from the scale factor and distance between the

camera locations using (4). Tables 1 and 2 show the

estimation results for scale and distance.
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Figure 5. Experiment Setting

Distance estimation of two objects 

The objective of the third experiment is to test the

algorithm with two objects located at different points.

Overall procedures are the same as the second experiment.

Experimental settings are shown in Figure 7. The 

simulated clouds are non-occluding. Estimation results are

presented in Tables 3 and 4. 

Figure 6. Clockwise from top left, pictures taken at d0,

d1, d2 and d3 respectively.

4. DISCUSSION ANDCONCLUSION 

The key results are: (a) development of a new wavelet

transform based method for measuring scale change and 

distance, (b) demonstration of gradient spread across 

scales being a measure  of  object size  and  providing  the
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basis for an algorithm for measuring scale change and (c) demonstration of the distance measuring algorithm with

tabletop experiments. From the distance estimates

provided by Tables 2 and 4, it is seen that the accuracy of

the distance estimate improves with increasing baseline.

The distance estimation is closely tied with segmentation.

If objects are occluded then methods should be devised to

focus on specific features on these objects. Work is in

progress in this regard and to conduct airborne

experiments.
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Table 3. Estimated scaleTable 1. Estimated scale 

Estimated
Distance

betweenDistance Pairs Object

Scales two points (cm)

1 (Left) 1.1106
d0 - d1 

2 (Right) 1.0839
5.05

1 (Left) 1.2543
d0 - d2 

2 (Right) 1.1832

1 (Left) 1.1294
d1 - d2 

2 (Right) 1.0917
5.05

Location
Distance

Pairs
Object

Measured

Distance

(cm)

Distance

between

 two points

(cm)

Scales
Estimated

Distance
Error (%)

1 (left) 45.60 1.1106 45.66 0.13
d1 d0 - d1

2 (right) 59.40
5.05

1.0839 60.19 1.33

1 (left) 40.55 1.2543 39.72 2.05
d0 - d2

2 (right) 54.35
10.10

1.1832 55.13 1.44

1 (left) 40.55 1.1294 39.03 3.76
d2

d1 - d2
2 (right) 54.35

5.05
1.0917 55.07 1.33

Table 4. Estimated distance

Location

Measured

Distance

(cm)

Distance

Pairs

Distance

between

 two

points

(cm)

Scales
Estimated

Distance

Error

(%)

d1 32.10 d0 - d1 4.60 1.1431 32.15 0.14

d0 - d2 9.70 1.3562 27.23 0.86
d2 27.00

d1 - d2 5.10 1.1865 27.35 1.28

d0 - d3 13.20 1.5328 24.77 5.42

d1 - d3 8.60 1.3410 25.22 7.32d3 23.50

d2 - d3 3.50 1.1302 26.88 14.39

d2 - d3 1.1302 1.1312 1.1292 3.5

Estimated Scales
Distance Pairs

s sx sy

Distance

between two

points (cm)

d0 - d1 1.1431 1.1477 1.1384 4.6

d0 - d2 1.3562 1.3621 1.3504 9.7

d0 - d3 1.5328 1.5408 1.5249 13.2

d1 - d2 1.1865 1.1868 1.1862 5.1

d1 - d3 1.341 1.3425 1.3395 8.6

Table 2. Estimated distances 
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