
DYNAMIC OPTIMIZATION ALGORITHM FOR GENERATING INVERSE

PRINTER MAP WITH REDUCED MEASUREMENTS

Sohail Dianat*, Lalit. K Mestha #, Athimoottil Mathew*

*Rochester Institute of Technology Rochester NY 14623, #Xerox Corporation, Webster, NY 14580

sadeee@rit.edu, {lkmetha@xeroxlabs.com, avmeee@rit.edu}

ABSTRACT

For a color printer to attain good color rendering quality the image

output terminal must be capable of producing the desired tone, i.e.,

the solidness, of each of primary color separations as requested.

Calibration is a major task in providing high quality prints. A

model (characterization) of the color printer is a first step for

building profiles. Most of the methods used to solve the calibration

problem utilize, in one way or another, a printer inverse map. Once

the inverse map is constructed, the input image will be processed

by the inverse map to obtain the correct CMY values that can

produce the desired Lab values. A major drawback in this type of

calibration is the need to measure NNN color patches each

time the printer is calibrated. We propose an alternative approach,

where few critical color patches are measured and the rest of the

points in the forward printer map are obtained using interpolation.

1. INTRODUCTION

A digital color printer can be seen as a device mapping colors from

an input color space into an output color space: e.g., a map from

the CMYK device – specific color space into the CIELab device-

independent color space. An approximation to this map can be

obtained by performing input-output experiments, by first

measuring the printer outputs corresponding to a combination of

requested colors at the printer inputs. These requested input colors

are the nodes of forward LUT, also known as the characterization

LUT. This map is then presented as a LUT that associates points in

the printer output color space to points in the printer input color

space. Most of the methods used to calibrate printers utilize, in one

way or another, a particular form of inverse map.

It is also desirable to have a printer inverse LUT with input nodes

regularly spaced on a sequential plane. While measuring the

printer forward map, it is possible to structure the input data by

selecting equally spaced input grid points. Just by swapping the

data of the forward LUT we can generate the inverse, but the data

of the input grids for this inverse become unstructured (the output

grid of the forward map is unstructured). Another important factor

is the accuracy of the inverse map. Accuracy is defined in terms of

E between desired input Lab (in) and output Lab (out). To

achieve an average E less than one for colors inside the printer

gamut, the LUT size has to be at least 171717 for CMY to

Lab printers, since E accuracy is inversely proportional to

forward LUT size. To compensate for the printer drift, it is highly

desirable to update the inverse printer map on a regular basis. This

requires printing NNN color patches and measuring their

Lab color values. We propose to down sample the input color

space from NNN to MMM (M<N) by selecting the so

called critical colors such that when we up sample the down

sampled LUT to the original size, the average E between the

original Lab and the up sampled Lab values is minimized as shown

in Figure.1.

The average E between original Lab and Lab1 is defined as

NNNK
i

iLabiLab
K

E
K

where,
1

)(1)(
1

 (1)

These critical colors are selected by minimizing E .Once these

critical colors are identified, the updating of the inverse printer

map is obtained by first printing and measuring these selected

critical patches, then up sample this measured LUT to the full size

and then apply an inverse algorithm to obtain the printer inverse

map. In this paper, we present a novel patch selection algorithm

that is based on dynamic programming.

The rest of the paper is organized as follows. Printer forward

model is introduced in Section 2 and details of how it can be

generated are discussed. Section 3 presents gamut mapping and

inverse printer map. Dynamic optimization (DO) patch selection

algorithm is presented in Section 4. In Section 5, simulations of

image path with reduced number of measurements are presented.

2. PRINTER FORWARD MODEL

Color device modeling is an essential part of any color

management and calibration. There are two types of color device

modeling: theoretical and experimental. In theoretical modeling of

color devices a small set of color patches are measured and this

data is used to extract the parameters of the model. The

Neugebauer equations are a classic example of color prediction

using a theoretical model [1, 2]. These analytical models are

usually not very accurate because they do not adequately capture

the nonlinearities of the device due in large part to external

variables such as temperature, humidity, and the parameters of the

print media. Another common modeling approach is the use of a

LUT. A color printer can be viewed as a device that maps colors

from an input color space to an output color space. The printer can

be modeled by a LUT containing the points in the input color

space and their corresponding points in the output color space. For

a three-color (CMY) printer, the input color space is device

dependent CMY and the output is device- independent CIELab

color space. The printer forward map LUT is a transformation

from CMY to Lab, denoted by P , and is normally measured by

printing NNN uniformly spaced CMY color patches and

measuring their corresponding Lab values. The CMY patches are

first transformed to CMYK by an appropriate grey color

replacement and under color removal (GCR/UCR) transformation

III ­ 11721­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

that consists of black addition and CMY subtraction. The CMYK

patch is then printed by the print engine. The forward printer

model LUT is denoted by P and is shown in Figure 2. The

GCR/UCR used is a simple algorithm. We first subtract
2

5.0 x from three-components of CMY and add black

colorant
2

xK , where),,min(YMCx .

3. INVERSE PRINTER MODEL

The forward printer model P is inverted to obtain a device

correction function, which maps each device-independent

color Lab to the device dependent values CMY. This is defined

mathematically as

CMYLabP :
1

 (2)

where input Lab points are placed on a uniformly sampled 3-d

grid of size NNN having a dynamic range of

128,127,1000 baL . This inverse map is a critical

part of the calibration algorithm. Different algorithms can be used

to compute the printer inverse map. They include Shepard [3],

Moving Matrix [4], Iteratively Clustered Interpolation (ICI) [5],

and Conjugate Gradient algorithm. Out of gamut Lab values are

first mapped to the nearest gamut boundary points using an

appropriate gamut-mapping algorithm, which preserve brightness

and hue. If the original color in the CIELab color space is denoted

by][baL and it’s corresponding mapped by][baL , then

)(
1

tan)(
1

tan,
a

b

a

b
LL (3)

The mapping algorithm is performed in two steps. In the first step,

we determine whether a given input color is inside or outside the

printer gamut. This is achieved by: 1) Transforming the color

gamut into spherical coordinates where the center of the sphere is

at the centroid of the gamut, approximately equal to Lab= [50 0

0]. In these new color coordinates, each color is specified by its

spherical coordinates r , , and where, r is the distance from

the gamut centroid to the given color point, is the hue angle

with the dynamic range from 0 to 2 and is the angle in the

constant plane from 0 to . 2) Finding the intersection of the

gamut with a straight line connecting the input color point to the

centroid of the gamut. This is achieved by searching the gamut

boundary points with coordinates that fall into the range

and . The average of these boundary points is denoted

by][aveaveaver . The desired color point is inside the gamut

if averr0 , otherwise it is outside. Once we determine that the

color is outside the printer gamut, we map it to the nearest point on

the gamut boundary that best satisfies the conditions given by

(2).The mapped Lab values are then inverted using an inversion

algorithm. This will produce a LUT from Lab to CMY, where the

input Lab is on a uniform grid. The ICI algorithm used in this

paper is a gradient-based iterative algorithm, which uses a

clustering approach for initialization of the algorithm [3]. With

J(k) being the Jacobian of transformation P, the updating equation

})]([){()()1(LabkCMYPkJkCMYkCMY (4)

4. PATCH SELECTION ALGORITHM

The 3-d transfer function P of a typical color printer is nonlinear

and can even be time varying, due to the interaction of the printer

colorants and paper substrate, changes in temperature, and

humidity. The printer static calibration can be achieved by

designing a look-up table to approximate the inverse printer map

(inverse of P
~

). In an open-loop system calibration, the input image

is passed through calibration transformation (inverse of P
~

) before

being fed to the printer for reproduction. This scheme will achieve

a E close to zero between an input Lab(in) patch and measured

(output) Lab(out) patch on the paper, provided that the printer does

not drift and the inverse printer LUT is a high-resolution LUT such

that the interpolation error can be neglected. None of these ideal

conditions exist in the real world. For these reasons, we need to

design a dynamic controller to operate on a finite number of color

measurements and a fast interpolation algorithm for use with

uncontrolled colors. A practical approach is to select a finite

number of patches in color space and control these points. If these

selected points are chosen properly, the whole color space can be

reconstructed with a small MSE by using an appropriate mapping

algorithm. There are different patch selection algorithms such as

Sequential Linear Interpolation [6], and Piece-wise Linear

Homeomorphisms [7]. The patch selection algorithm selects a

finite number of points by minimizing the MS error (E) between

the actual printer output and the up-sampled printer output

constructed using finite number of points as defined by

)2()1(outLaboutLabE (5)

)()1(CMYPoutLab (6))(ˆ)2(CMYPoutLab (7)

The LUT (P̂) is obtained by up-sampling the smaller LUT

containing the finite number of points (critical patches) as selected

by an appropriate patch selection algorithm. This is shown in

figure 3. Once the up-sampled LUT (P̂) is constructed, its inverse

Figure 1: Down Sampling and Up Sampling of P

33
NM

Down- Sample

Algorithm

CMY LabP

NNN NNN

P
~

MMM MMM

Interpolation
N

M

Q

1

NNN

1Lab1P

LabCMY

NNN

CMY

M

N
Q

CMY

P̂
CMYK

GCR/UCR
Lab

Figure 2: Forward Printer Model

III ­ 1173

LUT (inverse of P̂) is computed using Iterative ICI algorithm.

Patch selection DO algorithm is based on dynamic programming,

which is a multistage decision process. Details of DO algorithm

will be presented in the journal version of this paper. Here we

present a summary of the algorithm. We first discuss the one-

dimensional case and then extend it to two and three dimensions.

4.1 One-Dimensional DO Algorithm

Consider a 1-d discrete function)(xf , where x takes M discrete

values Mxxx ,,, 21 . We would like to choose MN points

Nxxxx ˆˆˆˆ
21 such that 11

ˆ xx , MN xx̂ , and

xx̂ , while minimizing the mean square error resulting from

piecewise linear approximation defined by)ˆ(ˆ xf and)(xf over

x . The mean square error MSE is given by

2
1

1
)()(

M

kM i
ixLixfE (8)

where)(xLk is the straight-line segment joining)ˆ(kxf to

)ˆ(1kxf and is given by

)ˆ()ˆ(
ˆˆ

)ˆ()ˆ(
)(

1

1
kk

kk

kk
k xfxx

xx

xfxf
xL , (9)

for 1ˆˆ kk xxx . Since we always need the first and the last

points for interpolation, the number of grid points has to be greater

than or equal to three 3N . Now assume that N=3, this means

that we need to find one grid point 2x̂ between 1x and Mx such

that the total MSE given by (8) is minimized. Let the solution

be jx , where Nj1 . The MMSE is given by

M

ji
ii

j

i
ii xLxf

M
xLxf

M
E

1

2
2

1

2
1)()(

1
)()(

1
 (10)

where)(1 xL and)(2 xL are

)()(
)()(

)(11

1

1

1 xfxx
xx

xfxf
xL

j

j
 (11)

)()(
)()(

)(2 jj

jM

jM
xxx f

xx

xfxf
xL (12)

Index j and E is found by the following optimization problem

)(

)()(
1

)()(
1

argmin))((argmin
1

2

2
1

2

1

jEE

xLxf
M

xLxf
M

kEj
M

ki
ii

k

i
ii

kk

 (13)

This means that if we start from 1x and wish to locate one grid

point between 1x and Mx to approximate)(xf , that point will

be jx and the corresponding MMSE will be
*

E . We define new

index jj1 and error
*

1 EE and assign these two numbers to

1x and write it as }{ 11 Ej . We repeat this process for 2x through

2Nx and form the following array of numbers as shown in

column 1 of Table 1. We call this the 1-d single stage grid

allocation algorithm. In this array, iE is the MSE between the

original function and linearly interpolated function using grid

points][Nji xxx over the closed interval of][Ni xx . These

indices and their corresponding MSE are required for the two stage

optimal search. In the two stage search, we try to locate two

optimal grid points between ix and Nx such that the total MSE

is minimized. Using dynamic programming we need to minimize

i
kikiki

mimi

jl

k

ii
EEEE

imEE
m

,

],[1minarg

 (14)

where mE is the MMSE corresponding to j=1, and imE is the

MSE between the original function and linearly interpolated

function using grid points],[mi xx over the interval

of],,[mi xx . Then the optimum 2-point grid including

boundary points will be][1 Nlk xxxx as shown in column 2 of

Table 1. We call this the 1-d two stage grid allocation algorithm.

Using the same approach, we can now build an n-stage

optimization process for the 1-d case with the optimal N grid

points][
1111 Nnm xxxx .

Point J=1 J=2 J=… J=N-2

x1 [j1 , E1] [k1 , l1 , EE1] … [m1 , n1,

…,ETotal]
x2 [j2 , E2] [k2 , l2 , EE2] … -
x3 [j3 , E3] [k3 , l1 , EE3] … -

xN-4 [jN-4 , EN-4] [kN-4 , lN-4 , EEN-4] … …
xN-3 [jN-3 , EN-3] [N-2, N-1, 0] - -
xN-2 [N-1 , 0] - - -
xN-1 - - - -
xN - - - -

4.2 Two-Dimensional DO Algorithm

Consider the 2-d discrete function)(Xf , where],[yxX takes

MM grid points uniformly spaced in yx plane as shown in

Figure 4. We would like to choose NN grid points out of

MM available data points such that the mean square

interpolation error between the original function and the

approximation obtained by up sampling the NN LUT is

P

)2(outLab

E
Down Sample

LUT

Up Sample to

NNN
LUT

+

_

)1(outLab

111 NNN

NNN

P̂

CMY

Figure 3. Optimum Patch Selection

Table 1. 1-d DO Algorithm

III ­ 1174

minimized. Since the boundary points should be included for

interpolation, the degrees of freedom are less than NN . For

example, if A is an internal optimum point belonging, then the four

boundary points B, C, D and E (as shown in Figure 4) should be

also included in this set. The 2-d DO algorithm is very similar to

the 1-d case. In the single stage 2-d algorithm, assume we start

with point],[ji yx and try to optimally select one internal grid

point in the set extending from this point to the boundaries of the

function f(X). The solution is obtained by direct optimal search and

the solution is denoted by the two indices ik and jl with its

associated four boundary points and MMSE J1(i,j)=Ei,j. This

process is repeated for each point in the set associated with the

domain of the underlying function. With three indices given by

],,[, jiji Elk Mji ,,2,1, (15)

In the second stage we will try to select two internal points in the

same set. If the indices corresponding to the first optimal point

are n and m , then the total MSE is

mnmjni EEE ,),(),,((16)

where),(),,(mjniE is the MSE resulting from interpolating all the

grid points between indices i to n and j to m using all necessary

boundary points. We now minimize E in (14) with respect to i and

j. Let the solution be ji mjni , . Then the indices

mnmn ji ,,, correspond to the two optimum internal points

(total of 14 points including boundary points) with MSE given by

),(),(1),(),,(,),(),,(2 mnEEEEjiE m
j

mn
i

nmnm
j

mn
i

n (17

This process is continued until we select N grid points.

4.3 Three-Dimensional DO Algorithm
Consider a 3-d discrete function)(Xf represented by a set of

pairs))(,(XfX where X is 3-d vector. These points are

uniformly spaced in the support space of)(Xf forming

an NNN LUT. The goal is to down sample this 3-d LUT to a

smaller LUT of size MMM while minimizing the MSE

between the original and the up sampled LUT. The 3-d DO

algorithm, which is an extension of the 2-d algorithm, can be used

for optimally selecting these grid points. Similar to 2-d cases, it is

a multistage decision process described by: a) In the single stage

decision process, assume that, we start from point },,{ kji and

form a cube extending this point to the boundaries of the

underlying function. The goal is to find one point inside the cube

with its associated boundary points such that the MSE between the

interpolated and original grid point values is minimized. Let the

optimal indices be il , jm , kn with MSE of ijkE . b) In the second

stage, we need to find two grid points within the same cube in

order to minimize the MSE as in stage one. If the solution for the

first point has indices il1 , jm1 , kn1 then the total MSE is given by

k
n

ij
m

i
lkji EkjiEnmlE

11
1112),,()((18)

where),,(kjiE is the interpolation error between the original and

the interpolated function with the cube extending from grid point

},,{ kji to grid point il1 , jm1 , kn1 . Now, we minimize 2E with

respect to the indices il1 , jm1 , kn1 . Note that the solution to the

first stage is used for finding the optimal solution in the second

stage similar to 1-d and 2-d algorithms. c) We continue this

process until we find the solution to the N-stage problem. Note that

while finding the solution to the N-stage grid allocation problem,

we obtain the solution to all stages up to and including N.

5. SIMULATION RESULTS

The results of the simulation for 512512 Lena image using

Xerox Phase 770 digital printer is shown in Table 2. Details of the

experiment and conclusions will be presented at the conference.

of

Patches

Mean

E

Min

E

Max

E

Mean

+2std

Median

E

95%

tile

3
3

3.11 0.27 8.84 5.03 2.98 4.69

3
4

2.09 0.04 8.94 4.14 1.71 3.93

3
6

1.18 0.02 7.05 2.95 0.74 2.79

3
13

1.03 0.00 8.80 3.24 0.43 3.12

6. REFERENCES

[1] R. Balasubramanian, “The use of spectral regression in

modeling halftone color printers”, IST/OSA Annual

Conference, Optic/Imaging in the Inform Age Rochester, NY,

October 1996, pp. 372-375.

[2] M. Xia, E. Saber, G. Sharma, and M. Tekalp, “End-to-end

color printer calibration by total least squares regression”,

IEEE Trans on Image Processing (1999), no. 5, pp. 700-716.

[3] Donald Shepard, “A two-dimensional interpolation function

for irregularly- spaced data”, Proc. ACM National Conf, pp.

517 –524, 1968.

[4] R. Balasubramanian, and M. S. Maltz, “Refinement of printer

transformation using weighted regression,” Proc of SPIE, 96.

[5] D. Viassolo, and L. K. Mestha “A practical algorithm for the

inversion of an experimental input-output color map for color

correction,” Journal of Optical Engr. vol. 42, no. 3, March 03

[6] J.Z. Chang, "Sequential Linear Interpolation of

Multidimensional Functions," IEEE Trans on Image

Processing, vol. 6, pp. 1231-1245, September 1997.

[7] R.E. Groff, D.E.Koditschek, and P.P. Khargonekar,

“Piecewise linear homeomorphisms: The scalar case”, IEEE

Intl Conf on Neural Networks, vol3, pp. 259-264, July 2000.

y C

Figure 4: Grid Points in x-y Plane

j
y

x

ix

M
y

M
x

j,
l,,

i
kE

ji

ikx

jly

A
B

D

E

Table 2: Profiling Using DO Algorithm

III ­ 1175

