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ABSTRACT

For a color printer to attain good color rendering quality the image 

output terminal must be capable of producing the desired tone, i.e., 

the solidness, of each of primary color separations as requested.  

Calibration is a major task in providing high quality prints. A 

model (characterization) of the color printer is a first step for 

building profiles. Most of the methods used to solve the calibration 

problem utilize, in one way or another, a printer inverse map. Once 

the inverse map is constructed, the input image will be processed 

by the inverse map to obtain the correct CMY values that can 

produce the desired Lab values. A major drawback in this type of 

calibration is the need to measure NNN  color patches each 

time the printer is calibrated. We propose an alternative approach, 

where few critical color patches are measured and the rest of the 

points in the forward printer map are obtained using interpolation.

1. INTRODUCTION 

A digital color printer can be seen as a device mapping colors from 

an input color space into an output color space: e.g., a map from 

the CMYK device – specific color space into the CIELab device-

independent color space. An approximation to this map can be 

obtained by performing input-output experiments, by first 

measuring the printer outputs corresponding to a combination of 

requested colors at the printer inputs. These requested input colors 

are the nodes of forward LUT, also known as the characterization 

LUT. This map is then presented as a LUT that associates points in 

the printer output color space to points in the printer input color 

space. Most of the methods used to calibrate printers utilize, in one 

way or another, a particular form of inverse map.  

It is also desirable to have a printer inverse LUT with input nodes 

regularly spaced on a sequential plane. While measuring the 

printer forward map, it is possible to structure the input data by 

selecting equally spaced input grid points. Just by swapping the 

data of the forward LUT we can generate the inverse, but the data 

of the input grids for this inverse become unstructured (the output 

grid of the forward map is unstructured). Another important factor 

is the accuracy of the inverse map. Accuracy is defined in terms of 

E  between desired input Lab (in) and output Lab (out). To 

achieve an average E  less than one for colors inside the printer 

gamut, the LUT size has to be at least 171717  for CMY to 

Lab printers, since E  accuracy is inversely proportional to 

forward LUT size. To compensate for the printer drift, it is highly 

desirable to update the inverse printer map on a regular basis. This 

requires printing NNN  color patches and measuring their

Lab color values. We propose to down sample the input color 

space from NNN  to MMM  (M<N) by selecting the so 

called critical colors such that when we up sample the down 

sampled LUT to the original size, the average E  between the 

original Lab and the up sampled Lab values is minimized as shown 

in Figure.1.

The average E  between original Lab and Lab1 is defined as
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These critical colors are selected by minimizing E .Once these 

critical colors are identified, the updating of the inverse printer 

map is obtained by first printing and measuring these selected 

critical patches, then up sample this measured LUT to the full size 

and then apply an  inverse algorithm to obtain the printer inverse 

map. In this paper, we present a novel patch selection algorithm 

that is based on dynamic programming.  

The rest of the paper is organized as follows. Printer forward 

model is introduced in Section 2 and details of how it can be 

generated are discussed. Section 3 presents gamut mapping and 

inverse printer map. Dynamic optimization (DO) patch selection 

algorithm is presented in Section 4. In Section 5, simulations of 

image path with reduced number of measurements are presented. 

2. PRINTER FORWARD MODEL 

Color device modeling is an essential part of any color 

management and calibration. There are two types of color device 

modeling: theoretical and experimental. In theoretical modeling of 

color devices a small set of color patches are measured and this 

data is used to extract the parameters of the model. The 

Neugebauer equations are a classic example of color prediction 

using a theoretical model [1, 2]. These analytical models are 

usually not very accurate because they do not adequately capture 

the nonlinearities of the device due in large part to external 

variables such as temperature, humidity, and the parameters of the 

print media. Another common modeling approach is the use of a 

LUT. A color printer can be viewed as a device that maps colors 

from an input color space to an output color space. The printer can 

be modeled by a LUT containing the points in the input color 

space and their corresponding points in the output color space. For 

a three-color (CMY) printer, the input color space is device 

dependent CMY and the output is device- independent CIELab

color space. The printer forward map LUT is a transformation 

from CMY to Lab, denoted by P , and is normally measured by 

printing NNN  uniformly spaced CMY color patches and 

measuring their corresponding Lab values. The CMY patches are 

first transformed to CMYK by an appropriate grey color 

replacement and under color removal (GCR/UCR) transformation 
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that consists of black addition and CMY subtraction. The CMYK

patch is then printed by the print engine. The forward printer 

model LUT is denoted by P and is shown in Figure 2. The 

GCR/UCR used is a simple algorithm. We first subtract 
2

5.0 x from three-components of CMY and add black 

colorant
2

xK , where ),,min( YMCx .

3. INVERSE PRINTER MODEL 

The forward printer model P  is inverted to obtain a device 

correction function, which maps each device-independent 

color Lab  to the device dependent values CMY. This is defined 

mathematically as 

CMYLabP :
1

    (2) 

where input Lab  points are placed on a uniformly sampled 3-d 

grid of size NNN  having a dynamic range of

128,127,1000 baL . This inverse map is a critical 

part of the calibration algorithm. Different algorithms can be used 

to compute the printer inverse map. They include Shepard [3], 

Moving Matrix [4], Iteratively Clustered Interpolation (ICI) [5], 

and Conjugate Gradient algorithm. Out of gamut Lab  values are 

first mapped to the nearest gamut boundary points using an 

appropriate gamut-mapping algorithm, which preserve brightness 

and hue. If the original color in the CIELab color space is denoted 

by ][ baL and it’s corresponding mapped by ][ baL , then 

)(
1

tan)(
1

tan,
a

b

a

b
LL        (3) 

The mapping algorithm is performed in two steps. In the first step, 

we determine whether a given input color is inside or outside the 

printer gamut. This is achieved by: 1) Transforming the color 

gamut into spherical coordinates where the center of the sphere is 

at the centroid of the gamut, approximately equal to Lab= [50 0 

0]. In these new color coordinates, each color is specified by its 

spherical coordinates r , , and  where, r  is the distance from 

the gamut centroid to the given color point,  is the hue angle 

with the dynamic range from 0 to 2 and is the angle in the 

constant  plane from 0 to . 2) Finding the intersection of the 

gamut with a straight line connecting the input color point to the 

centroid of the gamut. This is achieved by searching the gamut 

boundary points with coordinates that fall into the range

and . The average of these boundary points is denoted 

by ][ aveaveaver . The desired color point is inside the gamut 

if averr0 , otherwise it is outside. Once we determine that the 

color is outside the printer gamut, we map it to the nearest point on 

the gamut boundary that best satisfies the conditions given by 

(2).The mapped Lab values are then inverted using an inversion 

algorithm. This will produce a LUT from Lab to CMY, where the 

input Lab is on a uniform grid.  The ICI algorithm used in this 

paper is a gradient-based iterative algorithm, which uses a 

clustering approach for initialization of the algorithm [3]. With 

J(k) being the Jacobian of transformation P, the updating equation

})]([){()()1( LabkCMYPkJkCMYkCMY    (4)

4. PATCH SELECTION ALGORITHM 

The 3-d transfer function P of a typical color printer is nonlinear 

and can even be time varying, due to the interaction of the printer 

colorants and paper substrate, changes in temperature, and 

humidity. The printer static calibration can be achieved by 

designing a look-up table to approximate the inverse printer map 

(inverse of P
~

). In an open-loop system calibration, the input image 

is passed through calibration transformation (inverse of P
~

) before 

being fed to the printer for reproduction. This scheme will achieve 

a E  close to zero between an input Lab(in) patch and measured 

(output) Lab(out) patch on the paper, provided that the printer does 

not drift and the inverse printer LUT is a high-resolution LUT such 

that the interpolation error can be neglected. None of these ideal 

conditions exist in the real world. For these reasons, we need to 

design a dynamic controller to operate on a finite number of color 

measurements and a fast interpolation algorithm for use with 

uncontrolled colors. A practical approach is to select a finite 

number of patches in color space and control these points. If these 

selected points are chosen properly, the whole color space can be 

reconstructed with a small MSE by using an appropriate mapping 

algorithm. There are different patch selection algorithms such as 

Sequential Linear Interpolation [6], and Piece-wise Linear 

Homeomorphisms [7]. The patch selection algorithm selects a 

finite number of points by minimizing the MS error ( E ) between 

the actual printer output and the up-sampled printer output 

constructed using finite number of points as defined by

)2()1( outLaboutLabE         (5) 

)()1( CMYPoutLab   (6)   )(ˆ)2( CMYPoutLab    (7) 

The LUT ( P̂ ) is obtained by up-sampling the smaller LUT 

containing the finite number of points (critical patches) as selected 

by an appropriate patch selection algorithm. This is shown in 

figure 3. Once the up-sampled LUT ( P̂ ) is constructed, its inverse

Figure 1: Down Sampling and Up Sampling of P
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Figure 2: Forward Printer Model 
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LUT (inverse of P̂ ) is computed using Iterative ICI algorithm.  

Patch selection DO algorithm is based on dynamic programming, 

which is a multistage decision process. Details of DO algorithm 

will be presented in the journal version of this paper. Here we 

present a summary of the algorithm. We first discuss the one-

dimensional case and then extend it to two and three dimensions. 

4.1 One-Dimensional DO Algorithm 

Consider a 1-d discrete function )(xf , where x  takes M discrete 

values Mxxx ,,, 21 . We would like to choose MN  points

Nxxxx ˆˆˆˆ
21  such that 11

ˆ xx , MN xx̂ , and 

xx̂ , while minimizing the mean square error resulting from 

piecewise linear approximation defined by )ˆ(ˆ xf   and  )(xf  over 

x . The mean square error MSE is given by  

2
1

1
)()(

M

kM i
ixLixfE     (8) 

where )(xLk is the straight-line segment joining )ˆ( kxf to

)ˆ( 1kxf  and is given by 
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for 1ˆˆ kk xxx . Since we always need the first and the last 

points for interpolation, the number of grid points has to be greater 

than or equal to three 3N . Now assume that N=3, this means 

that we need to find one grid point 2x̂  between 1x  and Mx  such 

that the total MSE given by (8) is minimized. Let the solution 

be jx , where Nj1 .  The MMSE is given by 

M
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where )(1 xL  and )(2 xL  are

)()(
)()(

)( 11

1

1

1 xfxx
xx

xfxf
xL

j

j
   (11) 

)()(
)()(

)(2 jj

jM

jM
xxx f

xx

xfxf
xL    (12) 

Index j  and E  is found by the following optimization problem 
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This means that if we start from 1x  and wish to locate one grid 

point between 1x  and Mx  to approximate )(xf , that point will 

be jx  and the corresponding MMSE will be
*

E . We define new 

index jj1  and error
*

1 EE and assign these two numbers to 

1x  and write it as }{ 11 Ej . We repeat this process for 2x through

2Nx  and form the following array of numbers as shown in 

column 1 of Table 1. We call this the 1-d single stage grid 

allocation algorithm. In this array, iE  is the MSE between the 

original function and linearly interpolated function using grid 

points ][ Nji xxx over the closed interval of ][ Ni xx . These 

indices and their corresponding MSE are required for the two stage 

optimal search. In the two stage search, we try to locate two 

optimal grid points between  ix  and Nx   such that the total MSE 

is minimized. Using dynamic programming we need to minimize  

i
kikiki

mimi

jl

k

ii
EEEE

imEE
m

,

],[ 1minarg

 (14)

where mE  is the MMSE corresponding to j=1, and imE  is the 

MSE between the original function and linearly interpolated 

function using grid points ],[ mi xx  over the interval 

of ],,[ mi xx . Then the optimum 2-point grid including 

boundary points will be ][ 1 Nlk xxxx  as shown in column 2 of 

Table 1. We call this the 1-d two stage grid allocation algorithm. 

Using the same approach, we can now build an n-stage

optimization process for the 1-d case with the optimal N grid 

points ][
1111 Nnm xxxx .

Point J=1 J=2 J=… J=N-2

x1 [ j1 , E1] [ k1 , l1 , EE1] … [ m1 , n1,

…,ETotal]
x2 [ j2  , E2] [ k2 , l2 , EE2] … - 
x3 [ j3  , E3] [ k3 , l1 , EE3] … - 

xN-4  [ jN-4 , EN-4]  [ kN-4 , lN-4 , EEN-4] … … 
xN-3 [ jN-3 , EN-3] [N-2,  N-1, 0] - - 
xN-2 [ N-1 , 0] - - - 
xN-1 - - - - 
xN - - - - 

4.2 Two-Dimensional DO Algorithm 

Consider the 2-d discrete function )( Xf , where ],[ yxX  takes 

MM  grid points uniformly spaced in yx plane as shown in 

Figure 4. We would like to choose NN  grid points out of 

MM  available data points such that the mean square 

interpolation error between the original function and the 

approximation obtained by up sampling the NN  LUT is 

P
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Figure 3. Optimum Patch Selection 

Table 1. 1-d DO Algorithm 
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minimized. Since the boundary points should be included for 

interpolation, the degrees of freedom are less than NN . For 

example, if A is an internal optimum point belonging, then the four 

boundary points B, C, D and E (as shown in Figure 4) should be 

also included in this set. The 2-d DO algorithm is very similar to 

the 1-d case. In the single stage 2-d algorithm, assume we start 

with point ],[ ji yx and try to optimally select one internal grid 

point in the set extending from this point to the boundaries of the 

function f(X). The solution is obtained by direct optimal search and 

the solution is denoted by the two indices ik and jl  with its 

associated four boundary points and MMSE J1(i,j)=Ei,j. This

process is repeated for each point in the set associated with the 

domain of the underlying function. With three indices given by  

],,[ , jiji Elk Mji ,,2,1,    (15) 

In the second stage we will try to select two internal points in the 

same set. If the indices corresponding to the first optimal point 

are n and m , then the total MSE is 

mnmjni EEE ,),(),,(   (16) 

where ),(),,( mjniE  is the MSE resulting from interpolating all the 

grid points between indices i to n  and j to m using all necessary 

boundary points. We now minimize E in (14) with respect to i and

j. Let the solution be ji mjni , . Then the indices 

mnmn ji ,,,  correspond to the two optimum internal points 

(total of 14 points including boundary points) with MSE given by 

),(),( 1),(),,(,),(),,(2 mnEEEEjiE m
j

mn
i

nmnm
j

mn
i

n (17

This process is continued until we select N grid points.

4.3 Three-Dimensional DO Algorithm 
Consider a 3-d discrete function )( Xf represented by a set of 

pairs ))(,( XfX where X is 3-d vector. These points are 

uniformly spaced in the support space of )( Xf  forming 

an NNN  LUT. The goal is to down sample this 3-d LUT to a 

smaller LUT of size MMM  while minimizing the MSE 

between the original and the up sampled LUT. The 3-d DO 

algorithm, which is an extension of the 2-d algorithm, can be used 

for optimally selecting these grid points. Similar to 2-d cases, it is 

a multistage decision process described by: a) In the single stage 

decision process, assume that, we start from point },,{ kji and

form a cube extending this point to the boundaries of the 

underlying function. The goal is to find one point inside the cube 

with its associated boundary points such that the MSE between the 

interpolated and original grid point values is minimized. Let the 

optimal indices be il , jm , kn with MSE of ijkE . b) In the second 

stage, we need to find two grid points within the same cube in 

order to minimize the MSE as in stage one. If the solution for the 

first point has indices il1 , jm1 , kn1 then the total MSE is given by 

k
n

ij
m

i
lkji EkjiEnmlE

11
1112 ),,()(   (18) 

where ),,( kjiE is the interpolation error between the original and 

the interpolated function with the cube extending from grid point 

},,{ kji  to grid point il1 , jm1 , kn1 .  Now, we minimize 2E  with 

respect to the indices il1 , jm1 , kn1 . Note that the solution to the 

first stage is used for finding the optimal solution in the second 

stage similar to 1-d and 2-d algorithms. c) We continue this 

process until we find the solution to the N-stage problem. Note that 

while finding the solution to the N-stage grid allocation problem, 

we obtain the solution to all stages up to and including N.

5. SIMULATION RESULTS

The results of the simulation for 512512  Lena image using 

Xerox Phase 770 digital printer is shown in Table 2. Details of the 

experiment and conclusions will be presented at the conference. 

# of 

Patches

Mean

E

Min

E

Max

E

Mean

+2std

Median

E

95%

tile

3
3

3.11 0.27 8.84 5.03 2.98 4.69 

3
4

2.09 0.04 8.94 4.14 1.71 3.93 

3
6

1.18 0.02 7.05 2.95 0.74 2.79 

3
13

1.03 0.00 8.80 3.24 0.43 3.12 
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