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ABSTRACT

In this paper we investigate a lossy coding technique for sur-

face EMG signals which is based on the Algebraic Code Ex-

cited Linear Prediction (ACELP) paradigm, widely used for

speech signal coding. The algorithm was adapted to the EMG

characteristics and tested on both simulated and experimental

signals. A fixed compression ratio of 87.3% was chosen. On

simulated signals, the mean square error in signal reconstruc-

tion and the percentage error in average rectified value after

compression were 10.43 % and 5.52 %, respectively. On ex-

perimental signals, they were 6.74% and 3.11%. The mean

power spectral frequency and third order power spectral mo-

ment were estimated with relative error smaller than 1.36%

and 1.70%, respectively, for simulated signals, and 3.74% and

2.28% for experimental signals. It was concluded that the

proposed coding scheme can be effectively used for high rate,

low distortion and low-delay compression of surface EMG

signals.

1. INTRODUCTION

Recordings of electromyographic (EMG) signals can have du-

ration of hours when the muscle function has to be continu-

ously monitored, as it happens during working activities [1].

Compression of this large amount of data is necessary in most

cases, such as when EMG data are acquired on a patient and

sent remotely to be processed and analyzed (telemedicine).

Surface EMG signals are usually acquired at 12-16 bit/sample,

at sampling rates ranging from 1 kHz to 10 kHz. Moreover,

many detection systems are often applied on the same subject

and/or muscle, leading to multi-channel recordings. Despite

the importance of the possible applications, there are only few

works dealing with compression of surface EMG signals.

Norris et al. [2] investigated lossy compression of EMG

signals using adaptive differential pulse code modulation

(ADPCM), a technique commonly applied to speech signals.

Guerrero et al. [3] compared the performance of common

compression techniques, mostly adopted for speech signal

coding, applied to EMG signals. More recently, the use of

wavelets has been suggested for EMG signal compression[4].

The embedded zero-tree wavelet (EZW) coding, was also ap-

plied to EMG signals[5].

An EMG compression technique attaining high compres-

sion factors was presented in [6]. The technique was based

on the Auto Regressive (AR) model theory and attained ac-

curate reconstruction of the spectrum of the signal, while the

waveform was not preserved.

Along that line, in this paper we modified a speech sig-

nal compression technique, which performs AR modeling fol-

lowed by analysis-by-synthesis quantization of the residual

error to allow for reconstruction of the waveform, to EMG

signal coding. This coding technique is aimed at achieving

a low algorithmic delay and low bitrate while still preserving

the waveform of the signal and important EMG variables re-

lating both to the time domain representation of the signal and

to the shape of its spectrum.

The rest of this paper is organized as follows: the pro-

posed technique is presented in section 2; the signals used

as a test set for the proposed algorithm are described in sec-

tion 3, the relevant features in section 4; in section 5 results

are presented; finally conclusions are drawn in section 6.

2. COMPRESSION ALGORITHM

We propose an EMG coding technique based on the Algebraic

Code Excited Linear Prediction (ACELP) method, which is

widely applied for coding speech signals, e.g., in the GSM-

AMR speech coder[7]. For speech applications, the ACELP

coder computes the parameters of an AR model of the speech

signal (sampled at 8 kHz, 12 bit/sample) and transmits the

model parameters. The all-pole filter corresponding to the AR

model captures the shape of the power spectrum of the sig-

nal or, in the time domain, the short term correlation among

samples and is thus called Short Term Predictor (STP) filter.

Longer term correlation, for example related to signal peri-

odicity, is then modeled by means of the Long Term Predic-

tor (LTP) filter. The two predictor filters ensure that the signal
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spectrum is faithfully reconstructed, but the signal waveform

cannot be correctly recovered unless the proper excitation sig-

nal is conveyed to the decoder. For this purpose, the resid-

ual error signal from the two filters is vector quantized with

an analysis-by-synthesis approach. The quantization index is

sent along with the filter parameters to the decoder.

2.1. ACELP coder for EMG signals

The GSM-AMR implementation of the ACELP algorithm en-

codes speech signals at eight bit rates, ranging from 4.75 kb/s

to 12.2 kb/s. In this study we adapted 12.2 kb/s rate to the

EMG application.

The EMG signal is divided into 160-sample frames with-

out pre-processing; for speech applications the ACELP coder

applies high-pass filtering with cut-off frequency 80 Hz and

downscaling by a factor of two, which is not appropriate for

EMG signals. Each EMG 160-sample frame is further divided

into 40-sample subframes corresponding to 39 ms. The AR

parameters are computed on these subframes.

It has been previously shown that the power spectral mo-

ments of the surface EMG can be obtained with negligible

error using a 10-tap all pole filter[6], thus a 10-order STP was

chosen. AR coefficients are estimated from the first and the

third subframes and interpolation is applied for the model pa-

rameters of the remaining subframes. The AR coefficients are

computed from the signal autocorrelation[8]. Since the vari-

ance of estimation of the autocorrelation function depends on

the number of samples used for its estimate, we used a 240-

sample window for autocorrelation estimation. Finally, the

floating point AR coefficients are transformed into the Line

Spectral Pairs (LSP) representations to assure quantization

and interpolation efficiency as well as filter stability. The two

STP filters are then jointly quantized with split matrix quan-

tization of 1st order Moving Average (MA) prediction LSF

residuals[9].

The LTP filter models longer term signal correlations and

is parametrized as a gain and a delay. The parametrization

of the LTP filter is performed by searching a number of past

excitation residual signals (adaptive codebook) using the esti-

mated correlation and then interpolating around its maximum

so that non-integer pitch periods up to a 1/6th lag precision

are considered. The LTP delay is absolutely coded for the

first and the third subframes while for the other two subframes

only the difference with respect to the preceding one is coded.

It was expected that the LTP filter may be useful in the EMG

case when low force contraction levels are considered since

in this case the action potentials of single motor units repeat

almost periodically. After STP and LTP prediction, the 40-

sample residual excitation is vector quantized by exhaustive

search on a codebook (the innovative codebook) which is de-

signed to minimize the overall reconstruction distortion. To

speed up quantization and reduce complexity, ACELP uses

an algebraic codebook where the reconstruction vectors con-

sist of a few unitary pulses, the number of which depends on

the desired output bit rate, so that the complex operation of

vector quantization consists in finding the proper position of

the pulses to minimize reconstruction distortion as measure

by the Mean Squared Error (MSE). The quantization indices

thus represent the position and sign of those pulses. A 35-bit

codebook was used to code the position and sign of 10 such

pulses. The decoder inverts the process and reconstructs the

signal by inverse filtering the excitation signal from the inno-

vative codebook through the LTP and STP filter. The post-

processing stage used for audio applications to enhance the

perceived quality of the reconstruction at the expense of the

Signal-to-Noise Ratio (SNR) was omitted for the EMG appli-

cation.

3. TEST SIGNALS

The proposed compression algorithm has been tested on both

simulated and experimental surface EMG signals.

3.1. Experimental procedures

Experimental EMG signals were collected from the biceps

brachii muscle of six male subjects (age, mean ± SD, 25.3

± 3.2 years) with a bipolar electrode system (bar electrodes,

5 mm long, 1 mm diameter, 10 mm interelectrode distance).

The subject’s arm was placed in an isometric brace and the

forearm was fixed at 120deg (180 being full extension of the

forearm). The maximal voluntary contraction (MVC) torque

was estimated as the maximum torque exerted in three tri-

als separated by 3-min rest in between. Each subject then

performed four 15-s contractions at torque levels 10%–70%

MVC (increments of 20% MVC) with 10-min rest between

contractions. The EMG signals were amplified (-3 dB band-

width: 10–500 Hz), fed into a 12-bit acquisition board, and

sampled at 2048 samples/s. The recorded signals were off-

line band-pass filtered in the range 10–400 Hz and downsam-

pled to 1024 Hz before compression.

3.2. Simulation of surface EMG signals

Surface EMG signals were simulated using the model de-

scribed in [10]. The model produces synthetic motor unit ac-

tion potentials generated by muscle fibers of finite length and

detected by surface electrodes. The volume conductor com-

prises the muscle, fat and skin tissues, separated by planar

layers. The physical parameters of the model were selected

as in [10]. Sixty-five motor units with number of fibers in the

range 50–600 (uniform distribution) were located in random

positions inside the muscle. The motor units were recruited

according to the size principle and were assigned conduction

velocities with Gaussian distribution (mean 4 m/s, standard

deviation 0.3 m/s). The recruitment thresholds and modula-

tion of discharge rate were simulated as previously described.

Contraction forces in the range 5%–45% MVC (increments
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5% MVC) were simulated. For each contraction force, 5 sig-

nals were generated with random allocation of the motor unit

positions in the muscle.

4. SIGNAL ANALYSIS

Envelope, Root Mean Square (RMS), Average Rectified Value

(ARV), mean power spectral frequency, median frequency

and spectral skewness[11] were estimated from the original

and compressed EMG signals.

ARV and RMS were computed as:

ARV =
1

M

M∑
n=1

|s[n]|, (1)

RMS =

√√√√ 1

M

M∑
n=1

s2[n], (2)

where M is the number of signal samples.

Mean and median frequency were computed as:

fmean =

∑+N
i=1 fiP [fi] · (fi − fi−1)∑+N
i=1 P [fi] · (fi − fi−1)

, (3)

fmed∑
i=1

P [fi] · (fi − fi−1) =

+N∑
i=fmed

P [fi] · (fi − fi−1) =

1

2
·

+N∑
i=1

P [fi] · (fi − fi−1). (4)

The normalized third central moment, i.e., the skewness,

µ3, is defined as:

µ3 =
MC3

M
3/2

C2

=

∑+N
i=1(fi − fmean)

3P [fi] · (fi − fi−1)

(
∑+N

i=1(fi − fmean)2P [fi] · (fi − fi−1))3/2
.

(5)

Spectral variables were computed from 1-s signal epochs

using the periodogram estimator of the power spectrum and

the relative change in these parameters with compression was

used to quantify the modifications in spectral features due to

the loss of information.

Finally, the mean square error in signal reconstruction was

defined as:

D = 100 ·

∑N
i=1(sorig[i] − srec[i])

2

∑N
i=1 s2

orig[i]
%. (6)

Mean square error provided a global indication of the qual-

ity of signal reconstruction.

Finally, compression factor was defined as:

C = 100 ·
Lorig − Lcomp

Lorig

%, (7)

where Lorig and Lcomp are, respectively, the original and

the compressed file lengths.

5. RESULTS

With the selected parameters, a fixed compression factor of

87.29% is achieved. This can be increased with changes in

the implementation of the algorithm but in this study only

results with this compression factor are presented.

Table 1 shows the performance indexes for compression

of the simulated EMG signals at the six excitation levels.

Results are reported as average and standard deviation over

the five signal realizations. Figure 1 shows an example of

compressed experimental EMG signal. Table 2 reports the

same indexes for the experimental signals. All indexes are

below 10% with a tendency of decreased reconstruction error

for increasing force level. The reconstruction error and rel-

ative error in amplitude variables are in general larger than

for the case of experimental signals while mean and median

frequency present smaller error than in the experimental case.

6. CONCLUSIONS

We adapted a coding technique widely used for speech signal

compression to the compression of surface EMG signals. The

results on simulated and experimental signals showed that

the method allows for high compression factor with limited

signal distortion. In some applications, the amplitude vari-

ables and spectral features of the surface EMG signal are the

only relevant information. In this study, it has been shown

that these variables can be preserved with a percentage error

smaller than 10% for experimental signals. This error is the

same range of values as the standard deviation of estimation

of amplitude and spectral variables. For example, Farina et

al.[12] showed, on synthetic signals, that mean and median

power spectral frequencies can be estimated with a relative

standard deviation of approximately 7% and 3% of the real

value. Thus, the variability of estimates due to the stochastic

nature of the surface EMG are comparable with the percent-

age errors obtained in this study after compression by 87.3%.

One of the main advantages of this coding scheme with re-

spect to other approaches is that the algorithmic delay is kept

low due to framing. The decoder waits for a frame to be com-

pletely received before synthesizing the reconstruction while

for transform-based techniques, such as wavelet-based meth-

ods, longer blocks of data are usually packed and transformed

prior to quantization and entropy coding, thus suffering from

usually higher algorithmic delay.

In conclusion, the proposed approach allows for almost

real time coding and decoding EMG signals with compres-

sion factor 87.3% and reconstruction error limited to less than

10%. The error in estimation of EMG variables is considered

acceptable since it is comparable with the variability in esti-

mation of these variables. The method can thus be effectively

used in long-term recordings, such as those performed in er-

gonomics and occupational medicine.
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Force Level Rec. error (%) ARV RMS Spectral Features

(% of MVC) fmean fmed Skewness (µ3)

5 10.51 ± 2.14 8.19 ± 1.43 8.02 ± 3.86 2.08 ± 0.41 1.92 ± 0.23 11.13 ± 3.32

10 8.28 ± 0.66 7.49 ± 1.46 4.27 ± 0.69 1.37 ± 0.34 1.70 ± 0.47 12.05 ± 2.92

15 8.71 ± 0.80 6.57 ± 1.37 3.81 ± 0.23 1.08 ± 0.13 1.78 ± 0.30 13.63 ± 1.87

20 9.47 ± 1.01 4.50 ± 1.49 3.62 ± 0.54 1.20 ± 0.13 1.55 ± 0.27 10.44 ± 2.15

30 11.89 ± 0.69 2.41 ± 0.90 5.13 ± 0.56 1.16 ± 0.32 1.51 ± 0.17 8.66 ± 1.10

45 13.75 ± 1.06 3.93 ± 1.56 6.58 ± 0.90 1.25 ± 0.12 1.75 ± 0.36 8.02 ± 1.21

Table 1. Average coding results are shown for simulated EMG signals. For each force level the percentage error averaged over

6 different signals is indicated along with the corresponding standard deviation.

Force Level Rec. error (%) ARV RMS Spectral Features

(% of MVC) fmean fmed Skewness (µ3)

10 9.17 ± 1.55 5.30 ± 0.70 4.30 ± 1.32 5.69 ± 2.21 3.10 ± 1.05 6.87 ± 3.94

30 6.59 ± 1.80 2.78 ± 1.12 2.29 ± 1.22 3.47 ± 0.88 2.24 ± 1.20 5.08 ± 0.65

50 5.95 ± 1.40 2.33 ± 1.40 1.99 ± 0.90 2.88 ± 0.49 1.83 ± 0.88 5.77 ± 0.95

70 5.26 ± 1.20 2.05 ± 1.65 1.72 ± 0.52 2.94 ± 0.83 1.95 ± 0.58 6.07 ± 1.37

Table 2. Average coding results are shown for Experimental EMG signals. For each force level the percentage error averaged

over 5 different subjects is indicated along with the corresponding standard deviation.
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