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ABSTRACT

We describe methods for the classification of brain state 

using quantitative analysis of the EEG (QEEG). 

Neurometric analysis of EEG collected from the 19 standard 

locations of the International 10-20 System already provides 

such a tool.  In this work we demonstrate the effectiveness 

of this approach when the available inputs are reduced to a 

set of five frontal electrodes. This system has applications in 

certain critical clinical care situations, such as emergency 

room triage, when a full EEG might be unavailable, 

inconvenient, or time-consuming. Additionally, we augment 

the standard neurometric QEEG analysis with local 

discriminant basis features of the power spectrum and 

microstate-like features which exploit the rich temporal 

structure of the EEG. These enhancements provide clear 

gains in sensitivity and specificity on a representative 

database.  

1. INTRODUCTION 

Despite increasing use in clinical neuropsychiatry, 

quantitative assessment of patients based on EEG 

recordings has yet to find widespread use in acute care 

settings, particularly the Emergency Department (ED). One 

significant reason for this is the fact that the usual clinical 

EEG is based on electrodes placed over the entire scalp, a 

procedure that is lengthy, invasive, and requires the 

participation of a consulting specialist. 

Our goal is to design a portable device called the Brain 

Stethoscope to be used in such settings for triage purposes 

by non-specialist ED professionals.  The device will rely on 

Quantitative EEG measurements (QEEG), based only on a 

recording from five frontal electrodes referenced to linked 

ears.  It should include three levels of binary classifications: 

1) “Within Normal Limits” (“Normal”) vs. “Outside Normal 

Limits” (“Abnormal,”) (N/A), 2) “Organic” vs. 

“Functional,” (O/F) and 3) “Lateral” vs. “Global” (L/G), 

according to the classification tree depicted in Fig. 1. 

In this note, we address the N/A and the O/F problems 

and provide strong evidence for the potential clinical utility 

of such a device. The device’s analyzing software is based 

on classical quantitative EEG methods supplemented by 

more recent ideas, some of which exploit the time-domain 

information which the classical approach ignores.  

2. WHAT IS QEEG? 

Neurometric QEEG methods have been extensively studied 

since they were originally reported by E. Roy John [1-2]. 

The Neurometric method [1-4] is based upon extracting 

quantitative measures (also called features) from 

Electroencephalogram (EEG) signals, recorded from 

electrodes placed at standard locations on the human scalp. 

These features are log-transformed for Gaussianity, then 

age-regressed and z-transformed with respect to expected 

normal values, thereby expressing them as (dimensionless) 

standard scores, or z-scores.  Multivariate composite 

features are also constructed as Mahalanobis distances 

across a set of features, with the intercorrelation removed. 

Classical QEEG frequency bands are listed in Table I. 

Classical QEEG (CQEEG) variables are Absolute and 

Relative Power, Mean Frequency, Inter- and Intra-

hemispheric Symmetry and Coherence for monopolar and 

bipolar regions.  The binary classification problems are 

addressed by means of Linear Discriminant (LD) functions 

which are constructed using a subset of QEEG features 

(usually fewer than 12 per discriminant). The discriminant 

weights are obtained using a statistical pattern recognition 

toolbox which includes Fisher Linear Discriminants [5].  
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Fig 1. Three-level, tree-structured classification algorithm

for Brain Stethoscope device.

Numerous research studies have shown that QEEG 

methods are effective and reliable for the detection and 

classification of different types of neuropathologies [6,7].

3. LDB METHODS 

The local discriminant basis (LDB) algorithm is a method

for finding optimal coordinates for distinguishing among

multiple classes of signals [8].  It is a variant of the best

basis method for selecting an optimized set of wavelet

packet features in which a measure of dissimilarity is 

chosen as the cost function.  This is a supervised learning

approach in which training data from two or more classes of 

data are used to select best discriminating features, which

are then used as inputs to statistical classifiers.

We describe the application of this method to the N/A

classification problem considered here. The training data

consisted of EEG recordings for 180 subjects, 91 of which

were classified as “Normals” and 89 as “Abnormals.” For

any given channel, we compute a power spectrum for each 

subject using the multitaper spectrum analysis method [9].

This provides us with registered signals from two different

classes which serve as appropriate input to the LDB

procedure. In particular, we use a variant of the usual LDB

approach in which a more comprehensive search procedure 

is applied in the Haar-Walsh packet case, giving access to a 

much richer collection of coordinate systems [10]. The

algorithm outputs a basis of wavelet packet features, ranked 

by the cost function, and the best few of these are reserved 

for further evaluation. 

These LDB features may be viewed as surrogates for 

the classical QEEG features in that they are found by

“filtering” the power spectrum of the EEG in some fashion.

They differ from conventional QEEG features in that there

is no strict adherence to the use of standard EEG frequency

bands.  As in the case of QEEG, the final LDB features used 

were age-regressed and z-transformed for easy comparison

with existing features.  This process was carried out for each 

of the five channels used and for each of the ten pair-wise

channel power spectrum ratios.

4. EEG MICROSTATES 

The temporal dynamical structure of the EEG is encoded as 

a sequence of stable spatial configurations, called

microstates, separated by brief transitional periods.  The 

nature of these microstates and their relationship to various

psychiatric disorders are topics of significant current interest

[11].  The features we exploit in this application, while not

derived from true EEG microstates, provide a crude and 

easily calculated substitute in the absence of the full set of

EEG electrodes. 

Four of the five electrodes used in the application are

the electrodes F7, Fp1, Fp2, and F8 from the standard 10-20 

System. These four form a linear spatial array on the 

forehead and we consider the temporal behavior of the

vector E(t) = [F7(t), Fp1(t), Fp2(t), F8(t)]. We compute the

inner product vi  =  < E(t), wi > for each of the four Haar-

Walsh wavelet packets w1 = [1, 1, 1, 1], w2 = [1, 1, -1, -1],

w3 = [-1, -1, 1, 1], and w4 = [1, -1, -1, 1], and at each point 

in time we determine which of these inner products is

largest.  This converts the sequence of spatial EEGs into an

integer sequence of labels (e.g. 111223344400111…) which

is then “pruned” – all constant subsequences whose length

is less than some value (3, say) are removed (in fact, they

are set to a 5th value of “0”).  For example, this means that 

sequence 111223344432111 becomes 111000044400111. 

The resulting sequence is interpreted as being a sequence of 

“states” (the non-zero pieces) separated by regions of either

noise or transition between states (the “0” pieces). 

From this sequence, we compute a 4 x 4 matrix of 

transition probabilities, the eigenvalues of that transition

matrix, and the relative dwell times for each of the states. 

This gives us a set of 24 features for each patient. These

features are then age-regressed and z-transformed before

being further evaluated.

5. RESULTS 

5.1. Training and testing sets 

The data sets used for training and testing the linear

discriminants were provided by the research database of the

Brain Research Laboratory (Dept. of Psychiatry, NYU

School of Medicine). Each data set consisted of 1-2 

minutes of artifact-free EEG epochs (2.56 seconds each), 

recorded on a subject at rest with eyes closed. These epochs 

were identified by expert EEG technicians who made sure

they did not contain segments of EEG corrupted by artifacts

such as those produced by muscle (EMG) or eye

movements (EOG).  The sampling rate for the data was 100 

Hz. The “true” classification information (“diagnosis”) for

each data set was known a priori.

For N/A classification, we used a training set of 180 

data sets and a testing set of 168 samples (with 89 

“Normals”). For O/F classification, we used a training set of
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Fig 2. Improved ROC curves using LDB and microstate

features in addition to CQEEG features for “Normal” vs. 

“Abnormal” classification.

165 data sets (samples) and a testing set of 145 samples

(with 75 “Functionals”).

5.2. Definitions of sensitivity and specificity

The classification algorithm performs binary classification

of the form: “positive test result” (which we refer to as

“disease” for convenience) vs. “negative test result” (“no 

disease”). We adopted the convention that “Abnormal” and 

“Organic” both correspond to “positive” test results. The

sensitivity of a classifier is the ratio of “true positives” over

the number of subjects for whom “disease” is truly present.

The specificity of the test is the ratio of true negatives over

the number of subjects for whom disease is truly absent.

These ratios are usually expressed as percentages. A test is 

all the better as sensitivity and specificity are closer to

100%.

Fig 3. Improved ROC curves using LDB and microstate

features in addition to CQEEG features for “Organic’ vs. 

“Functional” classification

5.3. ROC curves for QEEG-based classification 

For the two classification tasks considered, a collection of 

linear classifiers was developed.  The final results presented

here were obtained, in each case, from a majority voting 

among five such classifiers.  In each of the individual 

classifiers, a collection of five features chosen from among

the LDB and microstate-like features was added to the base 

group of about ten CQEEG features that had been chosen 

for the binary classification problem in question.  A few of 

the classifiers omitted from two to four of the original

QEEG features after adding the five newer features. 

The output of a binary discriminant is a number which

can take any value between 0 and 1. Once a critical value 

(or threshold) T is selected, the output of the test becomes

binary and sensitivity and specificity for this particular

threshold can be computed. The ROC curves of Figs 2-3 

were obtained by varying the threshold between 0 and 1 in
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increments of 0.01. Optimal threshold values were obtained

by maximizing the quantity: (1.25 sensitivity(T) + 

specificity(T)). The sensitivity and specificity indicated in

the graphs of Figs 2-3 were those corresponding to these

optimal threshold values.

TABLE I

CLASSICAL QEEG FREQUENCY BANDS

Frequency Band Name Band limits (Hz) 

Delta1 0.5 – 1.5 Hz 

Delta ( ) 1.5 – 3.5 Hz 

Theta ( ) 3.5 – 7.5 Hz 

Alpha ( ) 7.5 – 12.5 Hz 

Beta ( ) 12.5 – 25 Hz 

Delta + Theta + Alpha + Beta 

(S) 1.5 – 25 Hz 

Beta1 25 – 35 Hz 

Gamma ( ) 35 – 50 Hz 

Alpha1 7.5 – 10 Hz 

Alpha2 10 – 12.5 Hz 

Fig. 2 shows the improved sensitivity and specificity of

the voting classifier for the “Normal” vs “Abnormal”

classification task when LDB and Microstate features are

added to the set of classical QEEG features. We can see that 

while sensitivity numbers are not much changed, the test 

specificity increases by 10% for the test group. Fig.3 shows 

results for the voting classifier in the “Organic” vs. 

“Functional” classification task. Again, sensitivity gains are

modest but specificity is significantly increased. 

6. CONCLUSIONS 

This work demonstrates feasibility of an approach to

quantitative EEG diagnostics using a greatly reduced set of 

easily accessed (frontal) electrodes.  The exact numerical

results presented are likely to change slightly under the use 

of the currently specified system when a much larger set of 

data is collected and processed by the Brain Stethoscope.

However, the LDB algorithm allows for continued

redefinition of features adapted to such a growing database.

Clearly, the addition of new EEG dimensions to the set of 

classical QEEG features improves classification

performance as measured by ROC curves.
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