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ABSTRACT 

Two different paradigms by the goals in gene-finding 
research have been recognized: 1) to offer computational 
aid in the annotation of the large volume of genomic data 
and 2) to provide a computational model helpful in 
elucidating the mechanisms involved in transcription, 
splicing, polyadynalation and other important processes on 
the pathway from genome to proteome [1]. New findings in 
gene regulation appear to focus a new interest in the latter 
paradigm approaches [1, 2, 3 and 4].  
Therefore, a single weight matrix for the genomic patterns 
consensus scoring [5, 6] can be substituted by SOFM 
clusters matrices. This should result in the detection 
improvement of gene functional sites or signals, and 
therefore a gain evaluation across the known Burset’s and 
Guigó’s collection of the genes of 570 vertebrates is 
provided by a percentile measure on an exemplary site 
detection statistics. Such an improvement is important in 
both the “extrinsic” and “intrinsic” approaches [14]. In the 
“signal” case of the latter [14], a demand is addressed for a 
neural approach which translates into likelihood scoring. 
This includes, but is not limited to, applications with HMM 
(Hidden Markov Model) derived gene finders [7]. The 
approach is also scalable into a clusters-based solution to 
genes recognition with the capability of integrating DNA-
string-contained knowledge in a novel way. 

1. INTRODUCTION 

In an attempt to analyse genes by computer (Fig.1), further 
improvements on gene structure elements detection and 
elucidation of the gene expression machinery would seem 
to be required [14], in view of new findings in gene 
regulation which include alternative splicing, alternative 
polyadenylation, alternative transcription initiation, RNA 
editing, twintrons, overlapping genes, trans-splicing etc. 
[1].Such gene functional sites can be recognized by so-
called signal sensors or their combination. 
     The genes are strings of A, T, G and C nucleotides, 
arranged in protein coding exons and non-coding introns of 
the DNA double helix strands. Their intron-less (by 
splicing) assembly, ready to translate into protein, is known 
as expression. A gene parse is the most likely phrase among 

gene structure terms which are identified by content and 
signal sensors (Fig.1, [14]). During a sequential parse 
evidence related to gene structure from signal or content 
sensors is being contributed part by part. Hence a likelihood 
score (soft score) is required rather than a categorical 
choice (hard score) which can turn out to be erroneous. The 
more adequate the evidence in its score, the better the 
whole recognition.  
   Three subsequent nucleotides, as not implicitly singled 
out from a DNA sequence, introduce 3 options of being 
read as coding for protein amino acids codons which are 
called open reading frames (OFR-s). 

                         

                

Fig.1. a) - By signal and content [9, 13-14] linguistic 
diagram for possible events while parsing a sequence of a 
candidate multi-exon gene [12], in the direction from 5’ 
(upstream) to 3’ (downstream). The arcs represented 
contents are: 5’UTR, EI–initial exon, E–internal exon, I–
intron, ET– terminal exon, 3’UTR. The nodes represented 
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signals: B–beginning, S–translation start, D-donor splice 
site, A-acceptor, T-translation stop, F-sequence end;  
b)- A gene structure by DNA stretch bases sequence 
between start and stop codons.    

     Among different tools used to recognize gene 
nucleotides patterns, including binding sites of 
transcription machinery and other gene functional 
elements, a profile matrix is still of great importance [3, 5 
and 6].   

   Let N1 s,...,sS =  be a set of DNA aligned sequences, N 

patterns instances of length L i.e.  

kLkk ss ,...,1=s , k=1, ..., N. A profile xL4P  is usually 

derived as ∑
=

=
N

j
kjntjnt si

N 1

)(
1

P , where nt = A, T, C, G;    

j=1, …, L and 
⎩
⎨
⎧ =

=
otherwise

ntsif
sint 0

1
)(   (1) 

     The profile, which is also a position-weighted matrix 
(PWM), is commonly used to recognize gene functional 
elements. This is done by scoring an annotated sequence 
versus the profile in which the each i-th column entry to 

PWM estimates the probability )( ii ntp  of finding at 

position i - a nucleotide },,,{ GCTAnti ∈ . Hence, for any 

candidate template sequence, the net consensus score of a 
site is approximated by the product of the probabilities, i.e. 
by likelihood scoring of template nucleotides, i.e.    

∏=
i

iiPWM ntpp )(          (2). 

     However, within a sequence pattern, a single PWM does 
not account for correlations of A, T, C and G bases. To 
account for them, more sophisticated statistical approaches, 
such as Maximal Dependence Decomposition (MDD, [8]) 
or multi-layered neural nets approaches [9], have been 
devised. Neural networks trained by backward-propagation 
algorithm performance are well recognized [9], yet their 
outcomes neither guarantee optimality globally nor can be 
stated by rules clarifying the results, though some recent 
approaches appear to alleviate this disadvantage [9]. Also 
they do not simply translate into a likelihood scoring [7]. It 
is for this reason that the attempt is made to extend simple 
PWM scoring to multi PWM-s by SOFM clustering of gene 
data as a novelty. Since such a scoring has been attached to 
the nodes and arcs of gene model (Fig.1), an optimal gene 
parse can be found [5, 7-8, 12].  

2. MATERIAL AND METHODS 

The idea behind this approach is to substitute a gene site 
single PWM profile, e.g. provided in [5], by profile clusters 

constructed by a self-organizing feature map (SOFM), 
which is well suited to detecting correlations and 
regularities in its input waveforms and adapting its future 
responses to that input accordingly [10, 11]. To represent 
an input space of its excitation x, SOFM performs by its

neuronal unit w together with its neighborhood )(dNi

containing all neurons within a range of radius d, which are 
configured according to the Kohonen rule [10, 11]; 

     )()()1()1( ttt ii xww αα +−=+   (3), 

where i stands for the winning neuron, i.e. the one which is 
closest to the input x. SOFM learning is completed in two 
phases; the ordering phase and the tuning phase [10, 11]. 
     A binary code known as BIN4 [9] can be used to 
represent an A, T, C and G nucleotides DNA pattern of 
length L. Accordingly, BIN4 codes of nucleotides are; 
[A]=[1 0 0 0], [T]=[0 1 0 0], [C]=[0 0 1 0] & [G]=[0 0 0 1].  
     It can be observed that after a learning set samples 
clustering, both the coordinate-wise orthogonality of BIN4 
and the learning rule of (5), which is also a mean value 
formula with a controlling learning factor α, imply 
plausible properties of SOFM out coming cluster, i.e.; 

1. Each neuronal vector w of length 4xL becomes a 
position- weighted feature matrix (PWFM)  
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2. SOFM response to the input sample is the winning 
vector of the highest consensus score class according to its 
cluster PWFM. 

3. Correlations among the clusters become dependent on 
the topology of the SOFM network.   

     To get an idea of an order of value of N in the learning 
set division into N parts-clusters classes, an entropy index 
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 (5), with   “∧” power operator.   

By matrices 
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jP which are N in number, index 
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states of symbols in the learning sequences are in 
comparison to the ones with a uniform distribution of A, T, 

C and G nucleotides. By c
jp   the frequency is relevant to 

how often a j- cluster neuron wins in response to learning 
data being trained, i.e. this is a cluster class probability.  

3. RESULTS 

Given the set of 570 vertebrates’ genes, an Ic index versus 
clusters number is shown in Fig.2. A linear topology of 
SOFM has been chosen to minimize mutual correlations 
among clusters neurons. Each template length is set as 
short as L=12 to compare it against the PWM considered by 
Guigó [5] for the translation start case. The TS signal 
includes an ATG string, but the ATG string does not imply 
a TS. Therefore, after the real functional site pattern has 
been SOFM-learnt by acquisition of its PWMS-s feature 
clusters, the set is scanned along each gene for all candidate 
patterns, which are assigned their likelihood scoring. 
Candidates for the TS are identified by an ATG codon of 
methionine amino acid before they are scored by the SOFM 
PWM-s to establish their priority. The candidates which do 
not belong to signal or content sensor category are expected 
to score less by this sensor than in the category which they 
belong to. In the x – y plane of Fig.3, the cumulate 
percentile curve (CPC) informs, by its y- CPC number, how 
many true functional sites score equally to, or greater than, 
x- percentile of the overall statistics of the candidate 
functional sites, i.e. of those by the ATG-only consensus 
pattern, in the TS signal case. That improves remarkably 
(Fig.3) with more clusters by N. Shapes for true TS signals 
appearing relevant to an exponential Poisson-like 
distribution of possible scorings and a not true TS case by 
linear CPC curve describing uniform-like scorings are 
given in Fig.4.   

Fig.2. Clustering index cI  versus the number N of classes, 

“ATG” start codon and the Burse & Guigó set case. 

Fig.3. CPC versus percentile, translation sites (TS) case. 
Improvement by SOFM cluster (diamond, constraining N ≅
40) versus single PWM (star). True TS-sites trained SOFM 
for their recognition. 

              
Fig.4. TS CPC versus percentile. The SOFM trained bottom 
line of scoring with not true TS-s (N=450 non-TS sites 
number equal to 46 602). Top curve as in Fig.3 – True TS-s 
clusters PWM-s scoring case, N≅40.    

4. DISCUSSION AND PERSPECTIVES 

Within gene recognition related to an artificial intelligence 
(AI) paradigm, SOFM out-coming vector clusters, which 
also serve weighting matrices for scoring, simply appear as 
winning neurons response. Though this approach may be 
related to the statistical ones [14] no statistical motivation 
has been a priori attached while the winning neuron 
scoring matrix self-selection can benefit from parallel 
architectures. The candidates scoring of gene functional 
sites allow a “soft” decision to true gene reconstruction in 
comparison to other neuronal approaches. Since genes’ AI 
algorithms are originally exponentially hard [5], a “right” 
initial guess to “gene parsing” by dynamic programming is 
important to prune possibly many alternative nodes when a 
gene parse by AI tree data structure [5] is at view. This is 
especially so with approaches which are “extrinsic” or 
“intrinsic” by content [14].  Also, in connection with robust 
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and fast HMM algorithm of Kulp for gene annotation 
which is “intrinsic” by signals, a demand for a neural 
network result translating into likelihood for scoring is 
addressed [7].   
     The presented approach is extendable to whole gene 
recognition by gene structure-dedicated signals and content 
sensors aggregation. This concerns sensors which refer not 
only to gene functional sites signal sensors such as the TS 
or stop, the splicing donor or acceptor junctions but also to 
exonic regions in each of the three ORF-s, or to intronic 
genomic fragments being cut off during splicing (Fig. 1). 
     Given a scoring likelihood of the exciting A, T, C, G 
string, gene structure parse can be accomplished (Fig.1, [5, 
7, 8, 13 and 14]). An improvement is clear by a CPC figure 
for a site case showing also, by Fig.5, the cis-control role 
[14] to distinguish the true from the not true sites.  Also the 
winning neuron pattern can be a DNA part which codes for 
a protein motif which accounts for gene coded structural 
elements within a secondary gene structure case, such as a  
helix, sheet or coil. This seems to be an issue that can not 
be directly handled in a statistical way, as a problem with 
regular patterns case consistent with chaos approach rather 
than statistically. However, further evaluations are needed 
to see if the predicted advantages come with practice in a 
weight-balanced way. On the other hand, HMM 
probabilities seem to show an instance case of Fig.5 
showing how period-3 HMM-like statistics, i.e. the one in 
three ORF-s, can be derived by SOFM clusters for a parse 
by the dynamic algorithm of Viterbi [7]. Also an 
optimization problem of set of clusters has resulted 1.

.
Fig.5. Principle of content sensors construction. Signal 
sensors k-mers are around gene functional sites. 
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