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ABSTRACT

In recent years, wireless sensor networks (WSN) have shown 
success in distributed real-time signal processing systems. In 
collaborative signal processing environments, each sensor is 
responsible for extracting pertinent information from the 
surrounding environment and transmitting it to other sensors 
and/or to the main processing station. Often times, the sensors 
operate under a number of constraints, such as limited processing 
power and low bandwidth. In this paper we propose a collaborative 
signal processing framework that is implemented in an acoustic 
monitoring scenario. A low-complexity voice activity detector and 
a gender classifier are implemented on the Crossbow sensor motes. 
A series of experiments are presented that characterize the 
performance of the algorithms under varying SNR conditions and 
in different environments. 

1. INTRODUCTION 

The development of independent, self-contained sensor devices, or 
motes, for use in wireless networks has made feasible distributed 
sensing systems. In these networks, each mote provides 
information about its surroundings to other motes and to the base 
station. In this scenario, the challenge is to develop distributed and 
collaborative methods that are optimized for the particular 
application and hardware platform [1]. Due to the power 
limitations on the hardware, all algorithms must be of acceptable 
complexity and provide adequate performance. The advantage of 
the collaborative environment lies in the fact that simple 
algorithms at the mote level can be combined to improve estimates 
and system performance. This paradigm differs from traditional 
frameworks in which a central sensor acquires and interprets the 
incoming data. Acoustic sensors are of particular interest in such 
scenarios because they provide a great deal of information about 
the environment. Human speech is perhaps one of the most 
revealing acoustic cues since it can convey important speaker 
information such as gender, age, or emotional state. 

In this paper, we study low-complexity algorithms for acoustic 
scene recognition problems. More specifically, a voice activity 
detector (VAD) and a gender classification algorithm are presented 
for the purpose of integrating them in a low-power WSN. The 
algorithm runs at each sensor mote where a local decision is made. 
The individual decisions are then combined at the base station 
using a data fusion algorithm. 

Efficient use of bandwidth in wireless sensor networks is of 
interest due to the constraints imposed by their size and power. In 
applications where an audio signal is to be transmitted from sensor 
to base station through a wireless medium, it is beneficial to 
discontinue transmission when speech is not present. As a pre-
processor to such a system, a voice activity detector is required to 

make a decision as to whether or not the current frame should be 
transmitted. A VAD can also improve the performance of other 
speech classification algorithms. In addition to the VAD, we also 
present a simple gender classification algorithm that makes use of 
some of the same features that the VAD uses. 

The challenge here is that the signal processing capabilities at 
the level of the mote are characterized by low precision and low 
clock rates.  Hence signal processing computations are subject to a 
tight budget and are susceptible to numerical and transmission 
errors.  Hence the VAD and the gender classifier are based on 
simple frame-by-frame energy and pitch measurements. The 
energy is estimated using a series of approximations in each frame; 
for pitch detection, a modified fixed-point version of the average 
magnitude difference function (AMDF) is developed and 
implemented at the level of the mote. A local decision is made 
based on these measurements and transmitted to the base station. 
At the base station, measurements are refined. 

A commercial off the shelf (COTS) hardware platform was 
chosen as a test bed for our real-time experiments. The individual 
sensor nodes used were the MICAzTM wireless motes and the 
MTS310CATM sensor boards from CrossbowTM. The base station 
used was the MIB600TM also from Crossbow [2]. The motes run 
TinyOS and are programmed using the nesC language [3]. The 
limitations and challenges of this system include limited 
processing power, drift in the clock rates, leaky buffers, and as 
mentioned before, finite word length effects. Keeping these 
limitations in mind, any algorithm involves clever numerical 
approximations and must be modular yet simple. The limited 
processing power necessitates the use of low-complexity functions 
that may make local decisions at the mote unreliable.  

The major contributions of this study are the development of a 
generalized framework for a distributed sensing and classification 
system, the characterization of a low-complexity VAD, and the 
efficient implementation of a gender classification algorithm on a 
network of sensor motes.  We note that implementation aspects in 
this network of sensor motes are by no means trivial and are 
hindered by lack of user-friendly development tools and 
documentation.  We also note that the bit-by-bit processing and 
transmission at the sensor level requires knowledge of the nesC 
language and TinyOS system that differ considerably from typical 
DSP development suites.

This paper is organized as follows: Sections II provides an 
outline for a distributed classification system in which the motes 
collaborate with each other to form a final decision. In section III, 
a low-complexity VAD and gender classifier are described and 
results are provided that characterize their performance. In section 
IV we describe the hardware implementation of the algorithm and 
its complexity and section VII contains concluding remarks. 
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2. COLLABORATIVE SIGNAL PROCESSING 

In this paper we present a system for performing collaborative 
analysis, classification, and synthesis of real-time audio in a 
wireless sensor network. Consider the block diagram shown in Fig. 
1. Each mote, represented by a block, is tasked with a particular 
sensing function and also sharing the information that it gathers 
with all other motes and the base station. In this scenario, at any 
point in time, any mote has all available information. In 
applications in which processing power is limited, it is of use to 
filter irrelevant data at the earliest stage in the process, thus 
preserving system resources. The local VAD at the sensor motes 
accomplishes this by only passing information pertinent to the task 
at hand. For example, in gender classification the pitch estimate 
during periods of voiced speech is often used as a feature. It makes 
sense in such scenarios to remove the unwanted input data (non-
speech frames in the gender classification example) as early as 
possible in the classification process. 

In typical classification problems based on audio inputs, a 
VAD is used to determine periods of speech activity. Within these 
periods, features are extracted and they act as inputs to pre-trained 
classifiers that make final decisions. A slightly adapted platform 
for use in wireless sensor networks is shown in Fig. 2. This figure 
shows the processing within each of the motes shown in Fig. 1. A 
local decision is made at mote i based on computed and received 
features and then transmitted to the base station. At the base 
station, a data fusion algorithm combines the data from each mote 
in order to form a final decision. Below we give a generalized 
mathematical framework for performing distributed classification.

Let xi denote a frame of the acquired signal at mote i with SNR 
i and VAD decision VADi. The mote makes use of the acquired 

signal, the SNR, and the VAD decision for that frame to extract a 
set of features, denoted by fi using an extraction function x

i. This 
is shown in (1).

(1) 

The resulting feature set is transmitted to the other motes and at the 
same time all other feature sets from other motes, depicted by fj,
are received. Using (2) the features from the other motes and the 
SNR estimate from each mote are combined to form a final feature 
set, ffi.

(2) 

where f
i is the input-output mapping between the local feature 

vectors and the final feature vector using the individual SNRs to 
appropriately weight the local features. This final feature vector is 
then used to make the local decision as shown in (3) using 

a classifier Ci.
(3) 

The local decisions are then sent to the base station. At the base 
station, the decisions are combined using a fusion rule denoted by 

d as shown in (4). Fusion rules typically make use of the 
individual local decisions and the SNR estimates.  

(4) 

In the classification scenario, each mote is tasked with the 
extraction of a particular feature. It then transmits the computed 
feature to the other nodes so that each has the ability to make the 
most reliable local decision possible. In such a scenario, it is 
possible that due to channel errors the features may never reach the 
destination. Flexibility must be built into the network such that 
local decisions can be made with incomplete feature sets. This 
requires the design of new classifiers that can make acceptable 
decisions despite missing feature inputs. When a decision has been 
made for a particular frame of audio, each mote then transmits 
their decision to the base station where a global one is formed. Due 
to varying SNR levels around the motes and due to incomplete 
feature sets, the reliability of any local decision can vary at any 
point in time. Because of this, control information can also be sent 
along with the decision so that the base station can appropriately 
weight the incoming decisions when forming the global one. 

This paradigm can also be used in a speech analysis/synthesis 
scenario. Speech compression is typically achieved by 
parametrizing a frame by an excitation signal and a system [9]. 
Although a number of low-complexity algorithms exist for 
performing this analysis (LPC-10), these are still of considerable 
complexity and are unable to execute in real-time on the selected 
hardware platform. One possible solution is to divide the 
complexity among a number of motes. For example, a group of 
motes can be tasked with performing the spectral envelope 
estimation while another group is responsible for obtaining an 
estimate of the excitation. By transmitting all parameters of a 
particular frame to all motes, any one mote at any point in time can 
have the ability of reconstructing the audio signal. 

3. VOICE ACTIVITY DETECTION AND GENDER 
CLASSIFICATION

Within the collaborative model discussed in the previous section, 
we present a voice activity detector and a gender classifier for use 
in a distributed wireless sensor network. The VAD attempts to 
remove non-essential information from the incoming audio signal 

Fig. 2. Block diagram of the local classification algorithm located at 
each mote Fig. 1. The communication paths between individual sensor motes 
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so that the feature extraction for the gender classifier operates on 
pertinent parts of the incoming signal.

3.1. Voice Activity Detection 

In this paper, we propose a low-complexity algorithm for voice 
activity detection for the purpose of implementing it in a WSN. 
Two important features that distinguish periods of voice activity 
and inactivity are the signal energy and the pitch. During voiced 
segments, the energy of the waveform is typically higher than 
during non-speech segments. In addition, the pitch estimate of 
segments of speech activity tends to stay constant assuming that 
the speaker does not rapidly vary their pitch. During non-speech 
segments, the pitch estimate typically varies greatly because of the 
lack of periodicity in the waveform. Because sensor motes have 
limited processing capability and precision, it is essential that the 
algorithm is simple yet robust with regard to numerical precision. 
Using low-complexity estimates of these two features, we can 
obtain a preliminary VAD decision at the sensor mote.  

At the mote, the analog signal is first digitized by the A-to-D 
converter on the sensor. The resulting signal is then divided in 
frames of length M and an energy value for frame m, denoted by 
Em is computed using (5). 

(5) 

In addition to the energy, the pitch of the particular segment is 
also calculated using the average magnitude difference function 
(AMDF) shown in (6). Although the AMDF generally provides a 
modest estimate of pitch, it was selected over other methods 
because of its low computational complexity and its robust 
performance in the low precision environment of a sensor mote. 
We note again that a mote is an 8 bit processor operating at a low 
clock speed. In addition, the AMDF is sufficient for the purposes 
of the VAD algorithm because of the distinct patterns in the pitch 
contours between periods of voice activity and inactivity. 

(6) 

Rather than considering the individual pitch estimates of the 
frames, a cumulative sum of the difference in pitch between 
successive frames is considered. This value increases during 
periods of non-speech activity and stays fairly constant during 
speech segments. The actual feature used as an input to the 
classifier is the slope of the cumulative sum for the last eight 
frames.

A multi-layer perceptron classifier was trained using the 
TIDIGITS database [6] with actual VAD values obtained using the 
VAD in [4]. In order to test the validity of the presented algorithm, 
unseen test data (data outside the training set) was processed by 

the algorithm with different AWGN levels. Fig. 3 shows the results 
for SNR levels ranging from 10 dB to 35 dB. The success rate is 
greater than 80% for all SNR levels with a maximum of 94% for 
clean speech. 

3.2. Gender Classification

Within the framework described in the previous section, we 
present a simple gender classifier strictly based on the calculated 
pitch during voiced frames, motivated by the classifier used in [5]. 
This simple technique has shown success as a pre-processor for an 
automatic speech recognition system that contains both a male and 
a female model. The mote utilizes the pitch estimate obtained 
during the VAD decision in order to perform the classification. 

A pre-trained classification tree was chosen to predict the 
gender of the speaker based on the features. Classification trees 
determine a set of logical if-then-else statements for prediction.  
Their advantage lies in their simplicity. The interpretation of the 
obtained results is simple since the output of the tree provides 
conditions on the independent variables for a particular 
classification output. Typical classifiers may yield complicated 
equations that must be programmed and computed in order to 
determine the value of the output based on the feature set. A 
classification tree, however, provides logical statements that can be 
programmed with a few if-then-else statements in nesC. Male and 
female speakers from the TIDIGITS [6] database were used to 
train the tree using the CART algorithm [7]. Informal experiments 
were conducted on data from the TIDIGITS database at different 
AWGN levels and the results ranged from 96% - 98%. These 
results are obtained from single speaker data consisting of 
numerical digits and higher error rates are to be expected in a more 
general implementation. 

4. HARDWARE IMPLEMENTATION 

4.1. Implementation challenges and preliminary results

There are a number of problems associated with implementing 
algorithms, such as those described above, in ad hoc sensor 
networks. The limited processing power, communications 
bandwidth, and storage capacity become problematic when 
processing speech and audio in real time. In this section, we 
present some of the challenges with implementing the above 
mentioned algorithms in hardware in addition to preliminary 
results. The selected hardware platform was the Crossbow MicaZ 
sensor mote and the MIB6000 base station. The implementation 
was done in fixed point in the nesC language. As is seen from the 
algorithmic descriptions in the previous sections, the main 
component of both the VAD and the gender classifier is the pitch 
detection algorithm, namely the AMDF. Because of its importance 
to both algorithms, the AMDF was individually tested on simpler, 
synthetic signals as well as on real time speech to validate its 
functionality.  

Simple sinusoidal tones of known frequency were used as test 
signals and the sensing was performed by a single mote. The mote 
then analyzed the signal using the AMDF and the frequency was 
determined. This was done for a number of signals ranging from 
200 Hz to 500 Hz. The experiment was conducted for varying 
distances from the audio source to the mote in a laboratory 
environment. The estimated lags were always within 3 of the ideal 
lags in this scenario. In a more interesting experiment, actual data 

Fig. 3. VAD success rate at varying SNR conditions 
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was acquired at the motes and then transmitted back to the base 
station. The AMDF algorithm residing on the mote was simulated 
at the base station and the minimum lag of the AMDF was 
obtained. The simulated AMDF at the base station gives identical 
values to the one residing on the motes, therefore the computed 
AMDF is what the mote itself sees. In the top part of Fig. 4, we 
show an error vs. SNR curve for varying SNR levels. As the plot 
shows, the errors range from approximately 5% (for high SNR) to 
30% for very low SNR. Below this plot, we show two sample 
AMDFs with the resulting minimum lag indicated by a dark line. 

Even for the simple sinusoidal case, there is a slight variation 
between the computed AMDF lags and the ideal ones. There are a 
number of factors that contributed to these errors. The most 
prominent was the low quality signal produced by the microphone 
on the mote. High frequency noise distorted the waveforms, and, 
for the lower frequencies, the signals were attenuated. This 
accounts for the minor variations in the minimum lag as well as the 
fact that the algorithm could not detect the signal at lower 
frequencies (see the 200 Hz wave). In addition, the background 
noise in the testing environment, the fixed point arithmetic, and the 
simplicity of the algorithm necessitated by the mote limitations 
also contributed to some of the errors. 

4.2. Complexity Analysis

Most algorithms developed for wireless sensor networks must 
take into account efficiency because of the limited resources 
available on the mote. In fact, a number of algorithms are available 
that attempt to reduce energy consumption in WSNs [8]. In an 
effort to maintain acceptable performance and speed, we have 
analyzed the complexity of the energy and AMDF calculations on 
the mote. Fig. 5 shows a chart of the different operations 
performed in the program and the corresponding clock cycles 
amount relative to the total. It is apparent that the operation 
requiring the most clock cycles is the AMDF. This is because of 
the nested loops (O(n2) complexity) required to implement it. For 
future implementations of the algorithm, we are seeking less costly 
ways of computing pitch periods of acceptable quality. Taking into 
account all computations, for a single frame of 64 samples, a total 
of 11312 clock cycles are required, which translates to 
approximately 2.8 msec in actual time. In this analysis, additions, 
multiplications, and lower level subroutines that are called by 
TinyOS are not taken into account. Although the additions and 

multiplications may not change the total complexity of the 
algorithm significantly, the lower level subroutines can potentially 
have a large impact. 

5. CONCLUSION 

A distributed acoustic sensing system for use in a wireless 
sensor network was presented in this paper. Within this 
framework, a voice activity detector and gender classifier were 
proposed and implemented on a limited power hardware platform. 
The proposed algorithm makes use of pitch and energy estimates at 
each frame in order to make a local decision, which is then shared 
with all other motes. Although the algorithm in this preliminary 
form shows some promise at varying SNR levels, further gain can 
be achieved. Due to the limitations imposed by the hardware, 
decreasing the complexity of the proposed system would be of 
benefit. Future work will focus on the reduction of complexity of 
the algorithm and the inclusion of other classification methods. 
Emotional state, age, and simple speech recognizers are all 
examples of potentially useful algorithms in monitoring scenarios. 
In addition, we are also currently studying an iterative data fusion 
algorithm to be implemented at the base station. 
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