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ABSTRACT 

In this paper, we consider the problem of equalizing a time-

varying channel in the presence of Doppler rate.  Blind 

estimation of a time-varying channel in the presence of 

Doppler frequency alone based on a Complex-Exponential, 

Basis Expansion Model (CE-BEM) has been studied by 

several researchers in the field.  Recently, we proposed a 

fractionally spaced channel model that does not require 

basis expansion and possesses a structure that models 

Doppler rate.  We presented a data-aided, LS method for 

channel estimation.  In this work we analyze the 

performance of the channel estimator using exact and 

perturbed Doppler estimates.  We present a symbol-by-

symbol based, decision-feedback equalizer for the time-

varying channel and assess its performance in terms of BER. 

1. INTRODUCTION 

Several researchers have studied the problem of estimating a 

deterministic, time-varying channel based on a CE-BEM 

model [1]-[3].  Reference [1] proposed a blind method using 

subspace decomposition. Reference [2] proposed a blind 

method using linear prediction. The CE-BEM channel 

model assumes that channel coefficients are time-invariant 

and that time-variation is induced by a first order Doppler 

component. However, several waveforms, such as 

SATCOM and HF require robust communications in the 

presence of Doppler rate.  In [4], we presented a channel 

model whose structure is capable of modeling Doppler rate. 

This channel utilized over-sampling to map the channel 

impulse response on a fractional time grid. We proposed a 

data-aided method based on least-squares for channel 

estimation. We motivated the need to model Doppler rate by 

numerical as well as asymptotic analysis of Doppler rate due 

to kinematics of motion in 2-D space. We proposed a 

preamble signal structure that provided a means to estimate 

Doppler and Doppler rate with a high degree of accuracy.  

In this paper, we analyze the performance of the channel 

estimator in the presence of exact as well as perturbed 

estimates of Doppler parameters. We present the 

development of a channel-estimator based, symbol-by-

symbol decision-feedback equalizer (DFE). We demonstrate 

the performance of the equalizer in terms of bit error rate 

(BER) via Monte Carlo simulations. 

2. CHANNEL ESTIMATION 

The Complex-Exponential, Basis Expansion Model (CE-

BEM) is a deterministic, time-varying channel model.  The 

coefficients of a CE-BEM channel are assumed to be time-

invariant or slowly time varying due to changes in the 

ionosphere [3].  The dominant source of time variation is 

induced by Doppler due to kinematics. CE-BEM models 

Doppler up to a first order component. It uses a Doppler 

basis to span all the first order components present in the 

channel.  The CE-BEM model is given by 
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  where M is the channel order and Q is the cardinality 

of the Doppler basis. In [4], we formulated the rate of 

change of radial distance between a source and an observer 

in 2-D space and provided analysis that motivated the need 

to model Doppler rate. The channel output, using the 

proposed model, is expressed by 

( ) ( ) ( ) ( ) ( )
21

0

k k

M
j n n

k

x n h k e s n k v n
α ω− +∗

=

= − + (2)

where α  is the normalized Doppler rate and ω  is the 

normalized initial Doppler frequency. 

Equation (2) can be expressed in vector form as 

( ) ( )n n= +x h v (3)

where ( )nx  is a 1N ×  observation vector defined as 

( ) ( ) ( )1
T

n x n x n N= − +x (4)

and h  is a ( 1) 1M + ×  channel estimates vector defined 

as 
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The channel estimates can be obtained by minimizing (3) 
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in a least-squares sense. 
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The matrix  is a ( 1)N M× +  matrix defined as 
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and the function ( )m nβ  is defined as 
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2.1. Performance with exact Doppler Parameters  

Given exact Doppler parameters, the matrix  in (3) and 

(6) is identical.  Substituting (3) in (6) results in 
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Equation (9) shows that, in the presence of exact 

estimates of the Doppler parameters, the true channel is 

distorted by additive noise only.  This indicates that channel 

estimates can be improved by increasing SNR.  Blind 

techniques do not reap this benefit since the channel 

estimates are dominated by statistical errors at high SNR. 

2.2. Performance with Perturbed Doppler Parameters 

When the Doppler estimates are perturbed, the LS solution 

is expressed as 
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Equation (10) shows that the LS solution cannot 

recover the true channel estimates even in the absence of 

additive noise.  We deduce that this result should exhibit a 

performance floor in terms of MSE as SNR is increased.  

Reducing (10) to a meaningful and mathematically tractable 

result in not practical.  We consider qualitatively the impact 

of perturbed Doppler estimates on a one-tap channel and we 

will quantify the result for higher order channels via 

simulation.  Assuming that the channel has one tap, the 

estimated channel coefficient is then given by 
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This result indicates that the true channel is modulated by a 

phase term whose magnitude is proportional to the error in 

the Doppler estimates. 

3. CHANNEL EQUALIZATION 

In this section we develop an equalizer for the channel given 

by (2).  The equalizer is a symbol-by-symbol based, 

decision-feedback equalizer similar to [1].  A DFE offers a 

significant advantage over a feed-forward equalizer (FFE) 

as it is able to remove both pre-cursor and post-cursor ISI 

[6].  Reference [6] proves that the MSE of a FFE reaches a 

floor that cannot be exceeded with increasing SNR since the 

MSE is dominated by residual ISI that the FFE cannot 

remove. To the contrary, the MSE of a DFE keeps 

improving as a function of increasing SNR.  

 We start by expanding (2) while ignoring the noise 

term without loss of generality.  This expansion results in 
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The desired signal at time n is ( )s n .  Therefore we 

solve for ( )s n  in terms of the other parameters which 

results in 
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 Estimating the transmitted data, ( )ŝ n , at time n ,

requires knowledge of the data estimates 

( ) ( ){ }ˆ ˆ1 , ,s n s n M− − .  The complex exponentials  

( ) { }0ij n
e i M

β    ∀ ∈  are known by assumption.  Reference 

[5] proposes a method that yields high quality estimates of 

these parameters. Channel estimates, ( ) { }0h i i M   ∀ ∈
are available by (6).  Hence, the transmitted data at time n

can be estimated as 
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The estimate in (14) could be significantly enhanced by 

using hard rather than soft decisions, provided that most of 

the hard decisions are not in error. Although decision-

feedback equalizers are sensitive to feedback errors, they 

outperform the FFE with a significant margin in practice [6].  

The hard decisions are obtained by mapping the soft 

estimates at the output of the equalizer onto the 

corresponding symbol in the signal space, , using the 

minimum Euclidean distance criterion 

{ }ˆ: arg min
i

n i n i
s

s s s s
∀ ∈

=     −   (15) 

Hence, the estimated symbol at time n  can be expressed 
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as 
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The equalizer of (16) possesses two distinct advantages. 

The first is that it reaps the benefit of decision-feedback. 

The second is that is avoids the need for matrix inversion 

required by block-based LS equalizers, which is 

computationally inefficient and is prone to ill-conditioning.  

Equation (16) reveals that the equalizer requires a 

memory of depth M. In practice, the equalizer computes the 

channel estimates during training and applies them to 

equalize the payload.  Assuming that ( )ŝ n  is the first 

payload symbol to be equalized, it is important to initialize 

the vector 1 1n n− −=s p  where  1n−p  consists of the last M

training symbols. 

4. SIMULATIONS 

In this section we assess the performance of the estimator in 

terms of MSE and its ability to reconstruct the channel 

response using exact and perturbed Doppler rate estimates.  

We also examine the performance to the channel estimator 

and the equalizer in terms of BER performance.  

4.1. MSE Performance 

The MSE is defined as 
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The channel is a 3-tap channel whose coefficients were 

generated at random.  The channel coefficients along with 

the simulated Doppler rates are listed in Table 1. 

Coefficient 0.3706 + 0.7166i 0.4295 + 0.3953i 0.8235 + 0.5747i 

α 0 0.1571 -0.1571 

TABLE 1:  CHANNEL PARAMETERS

The Doppler rate values in Table 1 are used to 

synthesize output of the channel.  We perturb these values 

and use them to construct ˆ  in (10) for the case of 

perturbed Doppler estimates. The MSE performance for the 

case of exact Doppler estimates is shown in Figure 1. As 

predicted by (9), the true estimates are perturbed only by 

additive noise and the MSE continues to improve linearly as 

SNR is increased. We also investigate the sensitivity of the 

MSE to an increasing number of samples. We notice an 

average improvement of 4 dB as N is increased from 20 to 

100 samples. The result for the perturbed Doppler rate is 

shown in Figure 2.  We observe that, at lower SNR, additive 

noise is dominant and the MSE tracks the unperturbed case.  

However, at higher SNR, the perturbation errors become 

more dominant and the MSE reaches a performance floor 

with a significant loss as compared to the unperturbed case.   

Figure 1:  MSE vs. SNR  with Exact Doppler Estimates. 

A direct comparison between this estimator and those 

of [1]-[3] is not plausible since the channel models are 

different. However, some qualitative conclusions can be 

drawn.  The blind estimators exhibit a MSE floor even in the 

presence of exact Doppler frequency estimates.  This is due 

to the fact that at higher SNR, the error in the channel 

estimates is dominated by errors in estimating channel 

statistics. Additionally, blind estimators require a larger 

sample set, 1000 in the case of [2], and can resolve the 

channel up to a scalar ambiguity.  Our estimator requires 20 

to 100 samples depending on multipath severity and SNR 

[4], and can  resolve the channel unambiguously.  

Figure 2: MSE vs. SNR with Perturbed Doppler Estimates. 

4.2. Channel Response 

In this section we demonstrate the estimator’s ability to 

reconstruct the channel response using exact and perturbed 

Doppler rate estimates. Results are shown in Figure 3.  This 

figure demonstrates the sensitivity of the channel estimator 

to the accuracy of the Doppler rate estimates and illustrates 

III ­ 1114



the need for a high quality Doppler parameter estimator.  

Reference [5] presented an estimator that achieves a CR 

bound and is capable of yielding estimates with the desired 

quality.   

Figure 3: Frequency Response with Imperfect Doppler Estimates. 

4.3 BER Performance 

Figure 4 demonstrates the BER results of the equalizer 

given exact Doppler parameter estimates. This simulation 

shows that with N=100 samples, the channel estimator is 

able to yield results identical to using exact channel 

coefficients.  The figure illustrates the ability of the DFE to 

restore the exponential nature of the BER curve and achieve 

results that are within 2.5 dB from that of an ideal channel. 

The BER results show that the data-aided channel estimator 

with DFE does not exhibit a noise floor as in the case of the 

blind estimators in [1] and [2].  However, our estimator 

requires training. Training could be made available from 

existing preambles that are typically used for detection and 

synchronization purposes. 

5. CONCLUSIONS 

In this paper, we considered the problem of estimating and 

equalizing a channel in the presence of Doppler rate.  We 

presented a data-aided LS estimator for the channel and 

demonstrated the performance of the estimator in the 

presence of exact and perturbed Doppler estimates.  We 

developed a symbol-by-symbol based decision-feedback 

equalizer and demonstrated its performance in terms of 

BER.  The proposed method of estimating and equalizing 

the channel has several advantages over a blind estimator.  

However, it requires training.  Training could be made 

available from existing preambles that are used for detection 

and synchronization. An existing method that delivers high 

quality Doppler estimates was identified.  

Figure 4: BER Plots. 
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