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ABSTRACT

Principal component analysis (PCA) has been used in many
applications ranging from social science to space science,
for the purpose of data compression and feature extraction.
Usage of PCA for synthetic aperture radar (SAR) image
classification, though widely reported by remote-sensing
researchers, has not been exploited much by automatic target
recognition (ATR) community. In the present paper, PCA
has been used in SAR-ATR using the MSTAR data base,
and comparison has been made with the conventional
conditional Gaussian model based Bayesian classifier [1].
The results have been compared based on percentage of
correct classification, receiver operating characteristics
(ROC), and performance with limited amount of training
data. By all standards of comparison, the PCA based
classifier was observed to outperform the conditional
Gaussian model based Bayesian classifier (CGBC) or at the
worst it performs at par. And given the computational and
algorithmic simplicity of PCA based classifier, the new
algorithm was concluded to be a highly prospective
candidate for real time ATR systems.

1. INTRODUCTION

Principal component analysis (PCA) has been used in data
analysis and data compression for a long time [2, 3]. Usage
of PCA for feature extraction has shown many advantages in
many fields. In the current work, we discuss the usage of
PCA on radar data for the recognition of ground targets from
their radar images. Though PCA has been used in works
reported in open literature, for remote sensing data
classification [4, 5, 6], use of the same for target recognition
task has not been well exploited. The novelty of the present
work lies in use of PCA for ATR exercise, and the
development and analysis of a simple nearest neighbor based
classification algorithm based on PCA-extracted features,
which is conceptually simple and computationally extremely
fast.
The rest of the paper has been arranged as follows. The next
section gives an overview of the database used for testing
the classification algorithms, which is followed by an

overview of the classification algorithms used in the present
work. This is followed by a report of the results, and then the
conclusion. In the appendix the confusion matrices of some
of the experiments have been given as a more complete form
of result display.

2. DATABASE USED

Database used for the validation of the classifiers proposed,
is the SAR images of five military ground targets. The
dataset has been collected by the MSTAR program [7].
Moving and stationary target acquisition and recognition
(MSTAR) program is a DARPA supported project for
collecting a standardized mono-static SAR image database,
collected using the Sandia National Laboratories Twin Otter
SAR sensor payload operating at X-band. The targets used
for the present experiments are the 2S1 tank (t000), D-7 land
clearing vehicle (t005), T62 tank (t016), ZIL131 APC
(t025), and ZSU-23 (t026). The target clips collected at an
elevation of 17 degrees were taken to train the classifiers
and those collected at elevation of 15 degrees were taken as
test images. The image clips were resized to 96x96 pixels.

3. EXPERIMENTAL SETUP

In the present work, the conditional Gaussian model based
Bayesian classifier [1] (CGBC) was taken as the benchmark
for comparing the results. This is mainly because as per
results reported in open literature; this classifier is one of the
most successful algorithms for SAR-ATR. Secondly, due to
the use of Bayesian classification algorithm, this algorithm is
the theoretically best algorithm (given there is enough
training data and correct probability density function is
found for the database). In this, each pixel of the image clips
is assumed to be from a Gaussian distribution, conditioned
or depending on the target type and target pose.

wasr +Θ= ),( (1)

where , r is the observed intensities of the pixels arranged in
a one dimensional vector, w is additive Gaussian noise, s is

the signal conditioned on Θ the target pose angle, and a the
target type. The log-likelihood of an observed r, given

{ a,Θ } can be shown to be proportional to [1]:
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Where ir is the ith pixel of the test-image-clip, ii , are the
standard deviation and mean of the pixel respectively (as
estimated from the training data), and N is the total number
of pixels in the test-image-clip. In this method, the
recognition is done as per the Bayesian rule of maximizing
the probability

)()|()|( aParPraP = (3)

P(a), the probability of each type of vehicle was taken to be
equal.
In the method of using principal component analysis (PCA)
[2, 3], the image pixels are assumed to be the observed
variables, depending upon the target type.

wasr += )( (4)

where, r is the observed intensities of the pixels arranged in
a one dimensional vector, and w is additive Gaussian noise.
The database is arranged so that all image clips collected at
a 15 degree elevation are taken as training data. Each image
clip in the training data-set is from the same elevation but a
different azimuth angle. Pixels of image clips are assumed as
variables, taking different observations with changing
azimuth angle. PCA is applied to the dataset to reduce the
number of observed variables. This is done in the following
steps:

• For each image clip, the pixels are arranged into the
observation vector, and consecutive image clips are
taken as different observational values.

• All consecutive rearranged image-pixel vectors are
stacked together to form the observation matrix.

• The observation matrix is normalized (to have unity
variance), and all the observation vectors are zero
centered. Let the final matrix be denoted by X.

• From this observation matrix, the covariance matrix is
found for the observation vector.

XXQ H= (5)

• Then the eigen-value operation is applied on Q, to get
the eigen vectors.

• Eigen vectors corresponding to k largest eigen values
are stacked together to form matrix V.

• Using this matrix V, the training dataset is reduced in
dimension to k. The final outputs from the training
phase are the database in reduced dimension and the
converting matrix V.

• In test phase, the test image clip is reduced in
dimension using the converting matrix V.

• Next the Euclidean distance is found from each point in
the training database, and the class giving the least
distance is decided as the class of the test clip.

Hence this is a nearest neighbor (NN) classifier, taking the
PCA-extracted data as features. We coined this simple

classifier as PCA-NN classifier. In all the experiments
reported in this paper, value of k has been kept to 20.
Because, from previous experiments this number of
principal components, have been shown to give the optimum
classification performance [8].

4. RESULTS AND DISCUSSIONS

The classifiers will be compared based on .their performance
over three criteria. Though, the more striking features will
be presented in this section in the form of graphs and bar-
charts, the confusion matrices from the major experiments
have been given in the appendix, for more complete
information on the performance of the algorithms.

The first criteria of comparison is the over all
percentage of correct classification. This can be observed
from table 1 and 4 in the appendix. For all the targets, the
PCA-NN classifier performs better than the CGBC
classifier.

As the second comparison criteria, the receiver
operation characteristics (ROC) of the two classifiers were
compared. The comparisons for the two algorithms for four
of the targets are shown in figure 1. They show the

percentage of correct classification ( ccP ), versus the

percentage of false alarm ( faP ) in a binary hypothesis test

between the target of interest and all of the remaining
targets. The probabilities of false alarm and correct
classification have been calculated as per the standard works
on SAR-ATR [1]. As can be observed, the performance of
PCA-NN classifier is similar (target t000) or better (targets
t005, t016 and t025) than the CGBC classifier.

Fig.1 ROC comparisons for four of the targets

As the last criterion of comparison, the performances
of the classifiers were studied with reduced amount of
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training data. The reduction in training data was done in two
different ways. First the training dataset was made sparse by
discarding each alternate training clip (tables 2 and 5 in the
appendix). In the second method, training data consisted of
image clips with imaging platform azimuth from 0 to 180
degrees, while the test set had images from all azimuth
angles. To analyze this more strong test, the test dataset was
divided into two subsets, the first set (set1) consisting of
images collected with azimuth 0 to 180 degrees and the
second (set 2) from azimuth 180 to 360 degrees. The
confusion matrices (table 3 and 6 in appendix) give the
result for both test data sets. All the results have been
presented in figure 2 and 3 in bar-chart form.
Looking at the over all performance of the classifiers with
training data reduction, the loss of performance was more
severe for CGBC classifier than for PCA-NN classifier

Fig.3 Performance of CGBC with reduced training dataset

Fig.4 Performance of PCA-NN classifier with reduced training
dataset

5. CONCLUSIONS

From the results found with the present work, it can be
clearly concluded that the simple PCA based NN classifier
out performs the CGB classifier in all the criteria of
comparison. And due to the simplicity of the PCA-NN
classifier, it takes several orders of less time for
computation, than the CGB classifier. Given the reported
success of CGB classifier, this makes a fairly strong
algorithm for comparison. More over the extraction of the
features of comparison (the data in PC-domain) is extremely
fast for this new algorithm (just a matrix multiplication!).
Hence the proposed PCA-NN classifier is a strong candidate
for any real time ATR system, given its performance and
computing speed.
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9. APPENDIX

Table 1. Confusion matrices for CGBC based algorithm
(full training dataset)

t000 t005 t016 t025 t026 Performan
ce

t000 201 2 18 49 4 73.35%
t005 2 234 7 17 14 85.40%
t016 20 1 219 23 10 79.92%
t025 1 2 30 236 5 86.13%
t026 2 4 4 2 262 95.62%

Table 2. Confusion matrices for CGBC based algorithm
(sparse training dataset to ½ original size)
t000 t005 t016 t025 t026 Performan

ce
t000 192 2 13 67 0 70.07%
t005 3 194 14 46 17 70.80%
t016 48 1 183 32 9 66.79%
t025 17 13 21 214 9 78.10%
t026 9 14 32 17 202 73.72%

Table 3. Confusion matrices for CGBC based algorithm
(training dataset for azimuth angles from 0 to 180

degrees only)
t000 t005 t016 t025 t026 Perfo

rman
ce
(%)

Overall
perform
ance

t000
set1

112 0 22 3 0 81.7

set2 38 1 48 49 1 27.7

54.74%

t005
set1

1 105 1 30 0 76.6

set2 5 40 26 33 33 29.2

52.92%

t016
set1

17 7 97 11 5 70.8

set2 52 5 57 21 1 41.1

56.20%

t025
set1

3 22 17 91 4 66.4

set2 62 1 45 26 2 19.1

42.86%

t026
set1

1 6 9 20 101 73.7

set2 28 24 52 8 24 17.5

45.62%

Table 4. Confusion matrices for PCA based algorithm
(full training dataset)

t000 t005 t016 t025 t026 Performan
ce

t000 219 0 50 5 0 79.93%
t005 3 262 2 4 3 95.62%
t016 15 2 246 8 2 89.78%
t025 8 3 5 256 2 93.43%
t026 0 4 0 3 267 97.45%

Table 5. Confusion matrices for PCA based algorithm
(sparse training dataset to ½ original size)
t000 t005 t016 t025 t02

6
Performance

t000 211 0 52 8 3 77.01%
t005 1 263 3 7 0 95.99%
t016 31 3 225 7 7 82.12%
t025 13 10 8 240 3 87.59%
t026 0 12 0 9 254 92.34%

Table 6. Confusion matrices for PCA based algorithm
(training dataset for azimuth angles from 0 to 180

degrees only)
t000 t005 t016 t025 t026 Perfo

rman
ce
(%)

Overall
perform
ance

t000
set1

119 0 14 4 0 86.8

set2 71 0 62 2 1 51.8

69.34%

t005
set1

0 127 0 3 7 92.7

set2 9 68 6 37 17 49.6

71.12%

t016
set1

4 2 126 5 0 91.9

set2 70 9 36 21 0 26.2

59.12%

t025
set1

2 2 6 125 2 91.2

set2 62 29 30 15 1 10.9

51.09%

t026
set1

0 2 0 2 133 97.0

set2 18 27 30 31 31 22.6

59.85%
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