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ABSTRACT

In active imaging, information such as range and velocity of a
target can be obtained by transmitting a signal and processing the
received signals. Signal processing of acoustic signals scattered
from distributed targets has become an increasing attention to the
researchers. The delay-scale wideband spreading function (WSF)
is often used to characterize the distributed targets environment.
This paper presents an efficient technique for estimating WSF
using Hermite decomposition. In realistic sonar and radar, it may
be necessary to detect more than one target simultaneously. Under
this scenario, resolution is a major concern to be considered to
separate multiple targets. This paper focuses on the applications of
Hermite decomposition to efficiently compute WSF and the use of
multiple transmissions to improve resolution.

1. INTRODUCTION

In active sonar and radar, range and velocity information of a
target can be obtained by transmitting a signal and processing the
received echo. For this active sensing case, a signal is transmitted
to the medium, which is reflected from the object and received at
the receiver. Then the received signal is processed by correlating it
with the hypothesized versions of the transmitted signal. This
correlation processing is referred to as matched filtering. The
magnitude squared of the output of matched filter is called
wideband cross-ambiguity function (WCAF). The WCAF is a
surface in the delay-scale plane. In [1], the WCAF was used as a
means of estimating point target parameters. However, the simplest
case of the received signal was used in [1], where the target was
considered as a point reflector.

This paper aims to characterize a distributed target (DT) rather
than a point target with varying ranges and velocities. The WSF is
usually used to characterize the DT environment. Some
applications of DT occur in sonar, radar, medical imaging,
oceanography, tomography, remote sensing, etc. A DT is one that
spreads in delay-scale plane as compared to a point target, which is
associated with only particular delay-scale. In a complicated
environment such as the ocean, the target is composed of several
objects, or a physical large object with continuum of reflectors and
the reflectors are often very close in delay-scale plane. In most
cases the propagation and scattering is not ideal and the signal
becomes spread in delay and scale so that it no longer resembles a
replica of the transmitted waveform. This phenomenon usually
occurs in two ways. The signal can be reflected from an elongated
scatterer that may have moving components, or propagation
involves multipath and intermediate reflections from boundaries.

Gaussian windowed linear frequency modulated (LFM) signals
are good candidates for the transmitted signal as they are known to
possess very good resolution properties for target parameter
estimation [1]. However, this paper considers a more general
transmitted waveform where the amplitude is not strictly a

Gaussian function. This is important as even a Gaussian
transmission signal may suffer from amplitude distortions due to
various transmitter hardware limitations. Furthermore, it would be
necessary for the sonar operator to use non-Gaussian amplitudes
due to other system constraints. Therefore, in this paper it is
proposed to decompose the transmitted signal amplitude using the
Hermite expansions for efficient computation of WSF. As an
arbitrary windowed signal is used in the transmission and hence in
the processing, an appropriate analytical model is necessary to
scale the signal in time to compute the WSF. However, the major
problem associated with this is that the signal is not known
analytically. A multirate sampling method maybe used to process
this kind of signals; however, it is a computationally cumbersome
procedure. Since the signal is not known analytically, creating the
scaled and delayed replicas requires sampling the signal and then
applying a multirate conversion technique. As such, these
techniques are not efficient because of the very high computational
complexity [2]. In this paper, we have used the Hermite
decomposition to develop an analytical model for the arbitrary
shaped LFM signal. Therefore, closed form expression for the
transmitted signal can be easily obtained. Using this closed form
expression, we propose algorithms to efficiently compute WSF.
We will also use the closed form expression in the processing of a
multiple transmissions system in Section 5. The development of
Hermite decomposition based efficient algorithms is the novelty
reported in this paper. In particular, the accurate estimation of
Hermite spread parameter, the derivation of closed form expression
for Fourier transform of LFM Hermite signals and the use of these
for efficient computation of WSF and for multiple transmissions
are the main contributions.

2. WIDEBAND SPREADING FUNCTION

When narrowband signals have been transmitted, narrowband
scattering functions can be estimated by computing the outputs of
narrowband cross-correlation receivers. For narrowband signal
model, the bandwidth of the transmitted signal is narrow as
compared to main frequency component. The narrowband
technique operates on the assumption that the narrowband
condition holds [2]. Mathematically, the narrowband condition is
written as TBc /1/2 <<υ , where υ is the scatterer’s radial
velocity, c is the propagation velocity in the medium under
observation, and TB is the time bandwidth product of the signal

)(tg . However, in many cases like ocean acoustics the
narrowband condition is violated. Moreover, the wide sense
stationary and uncorrelated scattering conditions assume wide-
sense stationarity in both time and frequency, which are not strictly
true for the ocean medium. In such scenario the wideband signal
model is more appropriate. In this paper, we will use wideband
signal model to compute WSF. In environments with multiple
scatterers, the delay, τ , and scale, α , are assumed to be
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distributed according to the WSF so that the received signal, )(tr ,
is written as [2]-[5],
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where ),( ταS is the WSF associated with each time-delayed and
time-scaled version of the transmitted signal and

)/()( υυα +−= cc . Equation (1) is called the wideband model of
the received signal.

By correlating the received signal, )(tr , with the hypothesized

replicas of the transmitted signal, )(tg , the wideband cross-
correlation (WC) function (matched filter) is defined as [2],
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Equation (2) is identical to cross-wavelet transform,
),( τα ′′rWg , of the signal )(tr with respect to the signal )(tg ,

which is assumed to be a mother wavelet. For this interpretation,
the transmitted signal )(tg should satisfy the admissibility
condition of being a mother wavelet, i.e.,
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where gc is the admissibility constant and )(ωG is the Fourier

transform of )(tg .
When the wideband signal model in (1) is inserted into (2), the

resulting output is expressed as,
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where wb∗ denotes wideband convolution and ),( τα ′′ggWA is the

auto-wavelet transform of the transmitted signal )(tg .

In [3], Naparst has proposed a method to reconstruct ),( τα ′′S

for the affine group. However, Naparst’s method failed to work in
some cases. Naparst did not consider noise effects and the
sensitivity to changing environments. The method also depends on
the choice of the signal. There are also various iterative techniques
such as gradient search algorithms [4], least-squares method [5],
and regularization techniques such as the method of Tikhonov [5].
However, the Tikhonov method has also some drawbacks such as
computationally intensiveness and the lack of guaranty of
convergence [5]. To overcome the above drawbacks, wideband
deconvolution of (4) has been used to estimate ),( τα ′′S [2]
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Note that if )(tg satisfies (3), then the right hand side of (5) is

equal to ),( ταrgWC (a property of cross wavelet transform).

Therefore, if )(tg is available in analytic form ),( ταS can be
easily computed using (2) rather than (5). In this paper, however,
we will consider semi-active sonar/radar case where the
transmitted signal is available only as a noise corrupted version
[6]. Under this scenario, the transmitted signal is not known

analytically. In this case the receiver, situated away from the
transmitter, receives two signals; one directly from the transmitter;
other reflected from the targets. That is, for single target
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where )(tg is the transmitted signal, )(1 tn and )(2 tn are

assumed to be zero-mean additive white Gaussian noise (AWGN)
process. We will use )(ˆ tg , an approximation to )(tg obtained

from )(1 tr , as the mother wavelet to compute (5). Using analytical

expression for )(ˆ tg and using (5), we propose algorithms to
efficiently compute WSF. This is achieved via Hermite
decomposition of )(1 tr .

3. HERMITE DECOMPOSITIONS

Hermite series expansion is a well known decomposition technique
useful in many signal processing applications. The Hermite
expansion is useful because of the following properties and
advantages: (i) the Hermite basis functions are orthogonal, (ii)
Hermite polynomials can easily be computed via a recurrence
relation, (iii) any type of signal can be represented to a high degree
of accuracy by using a sufficient number of terms in the expansion,
(iv) Hermite expansion is well suited for signals with finite time
support [7], (v) Hermite expansion helps to scale the signal easily,
which can be used for efficient evaluation of the WSF. The nth
degree Hermite polynomial is given by,
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Using )(tHn , the nth order associated Hermite (AH) function

)(,, tz
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where λ and ct are the spread and shift parameters. Any signal

)(tw can be represented using an AH series as,
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The proper selection of λ and ct are useful to obtain a good

approximation of the signal with a minimum number of Hermite
expansion terms. To expand a signal using the Hermite basis
functions, it is necessary to center the expansion around a suitable

ctt = . This is due to the fact that the Hermite basis functions

provide equal support on either side of the center of expansion [7].
Therefore, centering the expansion about ctt = would require

lesser terms for the Hermite expansion. The proper selection of λ
is also important because λ decides the amount of support in the
Hermite functions. In this paper we have used the centroid of
square of )(tw to estimate ct . An appropriate λ is then evaluated

around ctt = . Consider the following minimization that optimally

decomposes the signal in a mean square sense. The optimization is
accomplished by estimating the values of λ , ct , eC , and oC that

minimize a cost function,
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where )(twe and )(two are the even and odd parts of the signal
)(tw , evaluated at ctt = , while eE and oE are the energy of the

even and odd parts. Note that if the signal )(tw has either odd or
even symmetry then the optimization in (10) becomes rather
simplified. For even symmetry signals (i.e., 0=oE ), the
simplified form of (10) can be written as,
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and for odd symmetry signals (i.e., 0=eE ), the simplified form of

(10) can be written as,
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The simplified approach in (11) or (12) has been used in all
reported literature. However, for neither even nor odd symmetry
signals ( 0, ≠oe EE ) it can be shown that (10), the cost function

proposed here, would be a better choice. The optimization in (10)
can be done via gradient based methods such as the steepest-
descent or the Newton’s method. In the following simulations, a
signal containing both even and odd components and having an
arbitrary amplitude expressed as in (13) has been used.
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where λ = 0.126, ct = - 0.1, and a = [0.47 0.411 0.101 -0.474].

Fig. 1 shows the true and the Hermite synthesized signal’s
envelopes for the three methods. Simulations show that the use of
(10) performs better than the use of (11) and (12). In the
decomposition, truncation at 10=N resulted in a residual mean
squared error (MSE) of less than 10-4. Based on the result of Fig.
1, all the simulations in subsequent sections use (10) for the
estimation of λ for Hermite decomposition.

4. EFFICIENT COMPUTATION OF WSF

Here we consider the approximate sonar transmitter signal )(ˆ tg as
an LFM signal, given by,

])2[exp()()(ˆ 2ttjtwtg πβπκ += (14)

where )(tw is an arbitrary window function. The instantaneous
frequency of signal )(ˆ tg at 0=t is given by κ , TB /=β is the
frequency sweep rate, B is the bandwidth, and T is the duration.

Applying Hermite expansion, the Fourier transform of )(ˆ tg in
(14) can be expressed as,
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where the coefficients nG are the weights of the Hermite
expansion of the transmitted signals envelope that can be
computed from (9), and )( fZn is the Fourier transform of the
LFM AH function, )(tzLFM

n , given by
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Using some properties of the Hermite function [8], after some
manipulation, it can be shown that
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Using the semi-active case in (6) and using (17), (5) can be
expressed using the Hermite expansion as,
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where )(1 fR and )(2 fR are the Fourier transforms of the two

received signals )(1 tr and )(2 tr , respectively.

Because )( fZn has been obtained in closed form, it is easier to
evaluate (18). The procedure of computing the WSF in (18)
efficiently using the Hermite expansion of the signal can be then
outlined as follows: (i) obtain the amplitude envelope, )(tw , and
estimate the optimal values of spread and the shift parameters
using (10), (ii) compute the Hermite decomposition coefficients,

nG , of the envelope, )(tw , using (9), (iii) evaluate the Fourier
transform of the LFM AH function, )( fZ n , using (17), (iv) using
the Fourier transform of received signals, )(1 fR , )(2 fR ,
evaluate WSF in (18). Fig. 2 shows the estimation of WSF
obtained using (18) for arbitrary shaped LFM signals with AWGN
in the presence of three targets. The signal-to-noise ratio (SNR) of
the received signals )(1 tr and )(2 tr were considered 40 dB and
30 dB, respectively. The three targets can be distinguished clearly
in Fig. 2.

5. MULTIPLE TRANSMISSIONS FOR DETECTION

In realistic sonar and radar, it may be necessary to detect more than
one target simultaneously. The targets may also be close to each
other. Under these conditions, the WCAF using single
transmission often fails to separate close targets due to the noise as
well as resolution effects. Multiple targets detection and tracking
have been an active research area for over few decades [9]-[11].
The recent methods are reported to perform well under high SNR
environments. However, the methods may exhibit poor
performance when the noise level is high [9].

In this part, we investigate the use of multiple transmissions by
sending arbitrary windowed LFM signals at known interval of time
to track and detect multiple targets in noisy environment. The
target velocity can be computed for known values of scale. Then
the target velocity can be used to correct for the delay for every
scale and subsequently align all the WCAFs. This method could be
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implemented efficiently if the transmitted signal is known in
analytic form. Therefore, we will use Hermite decomposition
technique to have an analytical model of the transmitted signal.

For known value of scale parameter, α , the velocity of the
target, υ , can be computed as )1/()1( ααυ +−= c . Then for

every α , a delay correction term, )/(4 cpTfj Pe υπ− , is introduced.
Here p is the number of sonar ping, pT is the interval of

transmission, and the transmitter is sending multiple sonar pings in
a regular interval. Then the WCAF is computed for all the received
signals and added together to get the final WCAF. Figs. 3 and 4
show the simulation results for a single transmission and multiple
transmissions, respectively, with SNR = 10 dB (same targets as in
Fig. 2). There are ten sonar pings used to generate Fig. 4.
Comparing Fig. 4 with Figs. 2 and 3 it is seen that the multiple
transmissions provide much better resolution and posses higher
noise immunity than the use of a single transmission.

6. CONCLUSIONS

In this paper we have presented an efficient technique for
estimating WSF using Hermite decomposition. The main
advantage of the proposed algorithms is that the signals are
analyzed in the frequency domain; hence it is faster than the
conventional time domain approach. We have also proposed the
use of multiple transmissions to resolve close targets using the
WCAF. It appears that the multiple transmissions can distinctively
separate multiple targets with increased robustness to noise.
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Fig. 1. Original envelope and its Hermite synthesized forms.

Fig. 2. 3-D plot of WSF.

Fig. 3. 3-D plot of WCAF for a single transmission.

Fig. 4. 3-D plot of WCAF for multiple transmissions.
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