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ABSTRACT

We propose secure protocols for gaussian mixture-based sound

recognition. The protocols we describe allow varying levels

of security between two collaborating parties. The case we

examine consists of one party (Alice) providing data and other

party (Bob) providing a recognition algorithm. We show that

it is possible to have Bob apply his algorithm on Alice’s data

in such a way that the data and the recognition results will not

be revealed to Bob thereby guaranteeing Alice’s data privacy.

Likewise we show that it is possible to organize the collabo-

ration so that a reverse engineering of Bob’s recognition algo-

rithm cannot be performed by Alice. We show how gaussian

mixtures can be implemented in a secure manner using se-

cure computation primitives implementing simple numerical

operations and we demonstrate the process by showing how it

can yield identical results to a non-secure computation while

maintaining privacy.

1. INTRODUCTION

In today’s highly networked world the problem of data pri-

vacy is becoming increasingly relevant. As many researchers

working on classification repeatedly observe, accepting data

is always welcome but obtaining it is not easy. Legal and se-

curity constraints are often hindering open cooperation and

make data exchange a cumbersome process (if at all possi-

ble). This is especially the case in audio and speech process-

ing where extensive recording databases by large corporations

and governments are kept in the dark in fear of privacy or se-

curity violations. The same privacy issues also extend in the

realm of commercial ventures where the business model of

a data processing company analyzing customer data as a ser-

vice is always greeted with suspicion. In this paper we ad-

dress this model of processing where privacy of both data and

algorithms is a priority of two cooperating, but not trusting,

parties. With no loss of generality we specifically concentrate

on a gaussian mixture-based sound recognition task. We show

that it is indeed possible to have a secure cooperation where

there are no privacy issues while the required computations

and results take place. The remainder of this paper is ordered

as follows. In section 2 we formally introduce the problem at

∗This work performed while at MERL.

hand, in section 3 we introduce the secure computation prim-

itives that are employed for this task, in section 4 we explain

how the secure primitives can be combined to perform vari-

ous forms of secure classification, and finally in section 5 we

present some results before we conclude.

2. PROBLEM FORMULATION

Secure classification allows two parties, Alice and Bob, to en-

gage in a protocol that will allow Alice to classify her data us-

ing Bob’s classifier without revealing anything to Bob. Also,

Alice will learn nothing about the classifier, other than an an-

swer to her query. A two-party protocol between Alice and

Bob is secure when privacy and correctness are guaranteed

for both Alice and Bob. It is said that a protocol protects pri-
vacy when the information that is leaked by the distributed

computation is limited to the information that can be learned

from the designated output of the computation. In the semi-
honest case, both parties follow the protocol as prescribed but

may record all messages and subsequently deduce informa-

tion not derivable solely from the protocol output. In the ma-
licious case, however, no assumption is made about the be-

havior of either party. It is required that the privacy of one

party is preserved even in the case of an arbitrary behavior of

the second party. A protocol in the semi-honest case can be

made secure in the malicious case when accompanied with

zero-knowledge proofs that both parties follow the protocol.

3. PRIMITIVES

We use certain primitives in the protocols we present and

based on how the primitives are implemented, one can achieve

different levels of security and computational/communication

efficiency. In general, there is a trade-off between security and

efficiency. Below, we describe the primitives that we use and

briefly discuss about protocols that implement them.

3.1. Secure Inner Products (SIP )

The primitive which we use most often is for computing se-

cure inner products. If Alice has vector x and Bob has vector

y, a secure inner product protocol produces two numbers a
and b such that a + b = xty. Alice will get the result a and
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Bob will get the result b. To simplify notation, we shall denote

a secure inner product computation xty as SIP (x,y).

Many protocols have been proposed and they can be cat-

egorized as cryptographic protocols (eg. [1, 2]) and algebraic

protocols (eg. [3, 4]). They provide different levels of se-

curity and efficiency. In this paper, we use a cryptographic

protocol based on the idea of homomorphic encryption. See

the appendix for a description of the protocol and [2] for a

proof that the protocol is correct and secure.

3.2. Secure Maximum Index Protocol (SMAX)

Let Alice have a vector x = [x1 . . . xd] and Bob have the

vector y = [y1 . . . yd], they would like to compute the index

of the maximum of x + y = [(x1 + y1) . . . (xd + yd)]. At

the end of the protocol, neither party will know the actual

value of the maximum. Notice that the same protocol can be

used to compute the index of the minimum. We denote this as

j = SMAX(x,y).

Many generic secure two-party protocols have been pro-

posed that enable computation of a function f on the input

shares (e.g. [5]). The function f in our case gives the index

of the maximum of the sum of the input shares. The com-

munication complexity of most such protocols is linear in the

size of the circuit being evaluated.

Another approach is to follow the idea presented in [6].

Bob generates a random polynomial in two variables f(x, y) =
f ′(x+y) such that f ′(zi) ≤ f ′(zj) if and only if zi ≤ zj . For

each i = 1, 2, . . . , d, Alice uses OPE (oblivious polynomial

evaluation) once to learn hi(xi) where hi(x) = f(x, yi). The

index for which hi(xi) is the maximum is the answer Alice is

looking for. Notice that neither party will be able to learn the

actual value of the maximum element. However, Alice will

be able to learn the order of elements in x + y.

3.3. Secure Maximum Value Protocol (SV AL)

Let Alice have a vector x = [x1 . . . xd] and Bob have the vec-

tor y = [y1 . . . yd], they would like to compute the value of

the maximum element in z = x + y. After the protocol, nei-

ther party will know the index of the maximum element. No-

tice that the same protocol can be used to compute the value

of the minimum. Let us denote this as a + b = SV AL(x,y).

For this protocol, we can use the idea presented in [7]. Let

us first consider a naive approach. Notice that zi ≥ zj ⇐⇒
(xi − xj) ≥ (yj − yi). Alice and Bob can do such pairwise

comparisons and mimic any standard maximum finding al-

gorithm to learn the value of the maximum. To perform the

comparisons securely, they can use a protocol for Yao’s mil-

lionaire problem [5].

However, if Alice and Bob follow the above naive ap-

proach, both will be able to also find the index of the max-

imum. Hence, the idea is for Alice and Bob to obtain two

vectors whose sum is a random permutation of z. Neither

Alice nor Bob should know the permutation. They can then

follow the above naive approach on their newly obtained vec-

tors to compute additive shares of the maximum element. See

[7] for the detailed protocol.

4. SECURE CLASSIFICATION

Alice has a d-component data vector x and Bob knows multi-

variate gaussian distributions of N classes ωi, i = {1, . . . , N}
that the vector could belong to. They would like to engage in

a protocol that lets Bob classify Alice’s data but neither of

them wants to disclose data to the other person. We propose

protocols which enable such computations.

The idea is to evaluate the value of the discriminant func-
tion

gi(x) = ln p(x|ωi) + lnP (ωi) (1)

for all classes ωi and assign x to class ωi if gi(x) > gj(x) for

all j �= i. Here, p(x|ωi) is the class-conditional probability

density function and P (ωi) is the a priori probability of class

ωi. We consider two cases where: (1) each class is modeled

as a single multivariate gaussian, and (2) each class modeled

as a mixture of gaussians.

4.1. Case 1: Single Multivariate Gaussian

We assume that the distribution of data is multivariate gaus-

sian i.e. p(x|ωi) ∼ N (µi,Σi), where µi is the mean vector

and Σi is the covariance matrix of class ωi. Ignoring the con-

stant term (d/2) ln 2π, we can write equation (1) as:

gi(x) = −
1

2
(x−µi)

tΣ−1
i (x−µi)−

1

2
ln |Σi|+lnP (ωi) (2)

Simplifying, we have:

gi(x) = xtW̄ix + w̄t
ix + wi0 (3)

where

W̄i = −
1

2
Σ−1

i , w̄i = Σ−1
i µi, and

wi0 = −
1

2
µt

iΣ
−1
i µi −

1

2
ln |Σi| + lnP (ωi)

Let us create the (d + 1)-dimensional vectors x̄ and wi

by appending the value 1 to x and appending wi0 to w̄i. By

changing W̄i into a (d+1)×(d+1) matrix Wi where the first

d components of the last row are zeros and the last column is

equal to wt
i , we can express equation (3) in a simplified form:

gi(x) = x̄tWix̄

Expressing x̄ as x for simplicity, we can write the above equa-

tion as:

gi(x) = xtWix (4)

Henceforth, we shall use x to denote a (d+1)-dimensional

vector with the last component equal to 1 unless otherwise

mentioned.
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4.1.1. Protocol: Single Multivariate Gaussian (SMG)

Input: Alice has vector x, Bob has Wi for i = 1, 2, . . . , N .

We express the matrix Wi as [W1
i W

2
i . . .Wd+1

i ], where W
j
i

is the j-th column of Wi.

Output: Alice learns I such that gI(x) > gj(x) for all j �= I .

Bob learns nothing about x.

1. For i = 1, 2, . . . , N

(a) For j = 1, . . . , d + 1, Alice and Bob perform

SIP (x,Wj
i ) to obtain the vectors ai = [a1

i . . .
ad+1

i ] and bi = [b1
i . . . bd+1

i ] respectively. Alice

then computes aix.

(b) Alice and Bob perform SIP (bi,x) to obtain qi

and ri respectively.

2. Alice has vector A = [(a1x+ q1) . . . (aNx+ qN )] and

Bob has vector B = [r1 . . . rN ].

3. Alice and Bob perform the secure maximum index pro-

tocol between the vectors A and B and Alice obtains

I = SMAX(A,B).

Correctness: In step 1, ai and bi are vectors such that ai +
bi = xtWi. Also, bix = qi + ri. Hence, xtWix is given

by aix + qi + ri. I is the value of i for which xtWix is

maximum.

Efficiency: For a given i = I , the above protocol has (d + 2)
SIP calls. Hence, it would take N(d+2) SIP calls and one

call of SMAX .

Security: If Bob gets to know the dot products of d different

vectors with x, he can learn x completely. However, we see

that neither Bob nor Alice ever learn the complete result of

any dot product. Hence, if the protocols for SIP and SMAX
are secure, the above protocol is secure.

4.2. Case 2: Mixture of Gaussians

Let us now consider the case where each class is modeled as

a mixture of gaussians. Let the mean vector and covariance

matrix of the j-th gaussian in class ωi be µij and Σij re-

spectively. Hence we have p(x|ωi) =
∑Ji

j=1
αijN (µij ,Σij)

where Ji is the number of gaussians describing class ωi and

αij are the mixture coefficients. The log likelihood for the

j-th gaussian in the i-th class is given by

lij(x) = xtW̄ijx + w̄t
ijx + wij (5)

where

W̄ij = −
1

2
Σ−1

ij , w̄ij = Σ−1
ij µij , and

wij = −
1

2
µt

ijΣ
−1
ij µij −

1

2
ln |Σij |

Expressing x as a (d + 1)-dimensional vector and W̄ij , w̄ij ,

wij together as the (d + 1) × (d + 1) matrix Wij as done in

the previous case, we can simplify equation (5) as:

lij(x) = xtWijx (6)

Hence, the discriminant function for the i-th class can be writ-

ten as

gi(x) = logsum
(
lnαi1 + li1(x), . . . , lnαiJi

+ liJi
(x)

)

+ lnP (ωi) where (7)

logsum(x1, . . . , xJi
) = max(x1, . . . , xJi

) + ln
( Ji∑

j=1

e∆j
)
,

∆j = xj − max(x1, . . . , xJi
) ∀j ∈ {1, . . . , Ji}.

4.2.1. Protocol: Mixture of Gaussians

Input: Alice has vector x, Bob has Wij , αij and P (ωi) for

i = 1, 2, . . . , N , and j = 1, 2, . . . , Ji.

Output: Alice learns I such that gI(x) > gj(x) for all j �= I .

Bob learns nothing about x.

1. For i = 1, 2, . . . , N

(a) Alice and Bob engage in steps 1 and 2 of Pro-

tocol 1 for the Ji gaussians in the i-th mixture

to obtain vectors Ai = [Ai1 . . . AiJi
] and B′

i =
[B′

i1 . . . B′

iJi
]. Notice that Aij + B′

ij = lij(x).

(b) Bob forms the vector Bi = [Bi1 . . . BiJi
], where

Bij = B′

ij + lnαij .

(c) Alice and Bob engage in the secure maximum

value protocol with vectors Ai and Bi to obtain

yi and zi i.e. yi + zi = SV AL(Ai,Bi).

(d) Alice and Bob compute vectors Āi = [(Ai1 −
yi) . . . (AiJi

−yi)] and B̄i = [(Bi1−zi) . . . (BiJi
−

zi)].

(e) Alice and Bob compute the dot product between

the vectors eĀi and eB̄i using SIP (eĀi , eB̄i) and

Bob gets the result of the dot product. Let the

result be φi.

2. Bob computes the vector u = [u1 . . . uN ] where ui =
zi + lnφi + lnP (ωi). Alice computes the vector v =
[v1 . . . vN ] where vi = yi.

3. Alice and Bob perform the secure maximum index pro-

tocol between vectors u and v and Alice obtains I =
SMAX(u,v).

Correctness: If one follows the protocol carefully, it is easy

to see that ui + vi is equal to gi(x).
Efficiency: For a given i, there are (Ji(d+ 2)+ 1) SIP calls

and 1 SV AL call. Hence, in all, there are (d+2)
∑N

i=1
Ji+N

SIP calls, N SV AL calls and 1 SMAX call.
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Security: If Protocol 1 and the protocols for SIP , SV AL
and SMAX are secure, the above protocol is secure.

Notice that in step 1e, Bob receives the entire result of

the inner product operation. Though this reveals no infor-

mation about x to Bob, we can easily modify the step so

that Alice and Bob receive additive shares φiA and φiB such

that φiA + φiB = φi. In step 2, Bob can compute ui as

zi + φiB + lnP (ωi) and Alice can compute vi as yi + φiA

and the protocol will still hold. In case Alice and Bob want to

compute additive shares of the likelihood instead of the class

label, they will have to do an additional step of computing the

logsum of lnφiA and lnφiB to obtain φ̄iA and φ̄iB . They can

then compute ui as zi + φ̄iB + lnP (ωi) and vi as yi + φ̄iA

and engage in SV AL to compute the likelihood.

5. RESULTS, CONCLUSIONS AND FUTURE WORK

To validate the secure model we ran a large scale experiment

on audio from sports television programs. The desired task

was to learn and classify six different types of audio classes

within the data. We performed the task twice, once with-

out the privacy constraints by direct training and classifica-

tion from the data, and once with the secure classifiers. The

entire process between Alice and Bob was simulated using

a MATLAB implementation. As expected the results from

the two experiments were identical. The computation over-

head was significantly more in the secure method, however

the experiments were done using naively coded models and

dramatic speedups can be obtained with careful optimization

work. The use of different primitives can also result into

widely varying performance, communication and security lev-

els and a description of these is a lengthy research project of

its own and out of the scope of this paper.

Using the same process we have also implemented secure

Hidden Markov Models however due to space limitations we

reserve the presentation of details for a future communica-

tion. Likewise, various signal processing and classification

algorithms can be described in terms of secure primitives and

reformulated in a secure cooperative manner. We expect this

to be a fruitful area of research in the future. In addition to se-

cure formulations there is also work that can be done in devel-

oping better protocols for the primitives used (SIP , SMAX
and SV AL) and to increase their efficiency.

Modifying algorithms already in existence to deal with se-

cure cooperative models can be taken advantage of using the

approach we have described. It is our hope that this process

can help promote a more open collaboration setting where

parties can freely exchange data and algorithms without legal

and privacy issues.

6. APPENDIX

The following protocol is based on homomorphic encryption

and was proposed by [2]. Inputs: Private vectors x and y

with Bob and Alice respectively.

Outputs: Shares a and b such that a + b = xty.

1. Setup phase. Bob:

• generates a private and public key pair (sk, pk).

• sends pk to Alice.

2. For i ∈ {1, . . . , d}, Bob:

• generates a random new string ri.

• sends ci = En(pk; xi, ri) to Alice.

3. Alice:

• sets z ←
∏d

i=1
cyi

i .

• generates a random plaintext b and a random nonce

r′.

• sends z′ = z·En(pk; −b, r′) to Bob.

4. Bob computes a = De(sk; z′) = xty − b.

See [2] for a proof that the protocol is correct and secure.
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