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ABSTRACT

In this paper, we introduce a new method to improve the detection
performance of weak unknown radar signals in the presence of un-
known clutter. We use maximum entropy (MAXENT) probability
density function (PDF) estimation with a new approach based on a
few sampled fractional moments (FM). These moments; i.e, their
fractional orders, are obtained from the observed sample variates.
Using the fractional moments instead of the integer moments the es-
timated PDF is quite close to the true PDF. The test statistics is a
fractional polynomial of very low order of the received samples.

1. INTRODUCTION

Over the last two decades, significant progress has been made to-
wards the development of widely applicable radar clutter models.
The K-distribution has proved to be an appropriate model for char-
acterizing the amplitude of microwave sea clutter. The parameter-
estimation task for K-distributed radar clutter is to estimate some
moments of the K-distribution given N independent samples of the
radar signal [1], one of the simplest choices for the two moments is to
use the sample mean and variance of the data. However, there are sit-
uations that other models fit the clutter environment; i.e., Rayleigh,
Lognormal, Weibull, . . . , etc., under these circumstances the RADAR
system must be intelligent enough to capture the appropriate model.
This can only be possible if the underlying random behavior of the
clutter, PDF, is known. RADAR system performance for target de-
tection relies on false alarm probability (Pfa), the target detection
probability (Pd), and the time for detection. These parameters heav-
ily depend on the clutter PDF, hence, the statistical characterization
of clutter is a key point in the performance analysis. Statistical prop-
erties of clutter may only be known under very limiting circum-
stances, e.g., by assuming a homogeneous background, a RADAR
signal return from two homogeneous environment such as sky and
sea clutter definitely does not follow each one of them and detectors
devised for this scenario may suffer a performance degradation.

If a set of moments meet the Carleman condition [2] then a
unique PDF can be determined out of them. Moments are attractive
because their computation is algorithmically simple and uniquely
defined for any signal; it can be carried out in parallel and there-
fore very fast, and, since moments are global quantities, all available
information is used making moment-based methods less vulnerable
to losses or changes of details than methods that use few particu-
lar features of the signal. However, moments become very noise-
sensitive with increasing order. Hence, the lowest possible orders
should be used in a moment-based procedure. The classical moment
based methods involves very few integer moments. We describe
how a very few fractional- and possibly negative-order moments
can be used to increase the accuracy of PDF estimation in MAX-

ENT sense in a K or Weibull distributed clutter environment, they
are the widely accepted models for the compound Gaussian clutter
models. Generally speaking, the integer moments of spiky clutters
cannot be reliably estimated from the sample returns unless for very
large data set causing a prolonged detection time. In order to capture
the nature of clutter from possibly nonhomogeneous background we
should rely on low order; i.e, fractional moments. However, all frac-
tional moments may not equally be suitable for estimating PDF of
the cluttered environment. In this paper, we estimate the PDF of
a clutter using MAXENT method using the optimum FM. In our
scheme we use MAXENT method which has been involved in the
solution of many statistical problems and we use it to fit the PDF
for clutter. The chief assertion of the MAXENT PDF estimation
is that the most unbiased PDF is the maximum entropy distribution
satisfying some constraints which are usually a number of known
moments, fractional or integer. The best way to give a short intro-
duction to MAXENT is to offer a quote from one of the pioneers of
these techniques, Edwin Jaynes [3]: The notion of entropy defines a
kind of measure on the space of probability distributions, such that
those of high entropy are in some sense favored over others. The
maximum entropy distributions are “in some sense favored” can be
backed up by mathematically proving what has come to be called the
concentration theorem [3]. The result of this is that for a given set
of constraints such as moments or their functions, if there is a family
densities that could give us our solution, most of the solutions are
concentrated, or close to the maximum entropy PDF. Thus, it is our
best guess to take MAXENT PDF as the distribution of the desired
variate. This paper is organized as follows. In section 2, a discus-
sion about MAXENT PDF estimation based on FM is provided, in
section 3, the detection problem in presence of clutter is presented,
and in section4, we discuss the new detector using MAXENT and
FM. In section 5, we provide the simulations and results, and some
concluding remarks at the end.

2. MAXENT DENSITY ESTIMATION VIA FRACTIONAL
MOMENTS

It is a well known fact that a finite set of moments does not allow to
calculate PDF of a random process. To get an unambiguous statis-
tic, one has to approximate the unspecified moments in some sense.
One way to do this is maximization of differential entropy. In this
paper, we utilize the MAXENT principle as follows. Given the re-
ceived samples of clutter, possibly in addition to noise, or signal
plus clutter, and noise, we estimate PDF in MAXENT sense that
matches the received data. We note that the traditional MAXENT
[3] approach is based on a give set of moments or estimated sam-
ple moments to estimate PDF in MAXENT sense, but in this pa-
per, we find the best set of moments, fractional or integer, that fit
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the received data set optimally in MAXENT sense. It is shown that
MAXENT PDF estimation based on fractional moments has better
performance than integer moments [4, 5]. We consider a positive
random variable X with PDF f(x). Our problem is to maximize the
entropy functional H[f ] = − ∫

∞

0
f(x) ln f(x)dx subject to some

FM µj = {E(Xαj )}M
j=0 where the FM based MAXENT PDF is

given as follows

fM (x) = exp

(
−

M∑
j=0

λjx
αj

)
, (1)

where λ0, · · · , λM are the Lagrange multipliers corresponding to
the following M FM constraints

µαj
= E(Xαj ) =

∫
∞

0

xαj fM (x)dx, j = 0, · · · , M, (2)

where α0 = 0. Then the entropy is represented by

H[fM ] = −
∫

∞

0

fM (x) ln fM (x)dx =
M∑

j=0

λjµαj
. (3)

If we assume that F (x) and FM (x) are the cumulative distribution
function for the exact and MAXENT solution, respectively, it has
been shown [4, 5, 6] that we have the following bound for the differ-
ence between these two functions

sup
x∈[0,∞)

|FM (x) − F (x)| � 3

√
−1 +

√
1 +

4

9
(H[fM ] − H[f ]),

therefore, a convergence in entropy is translated into convergence in
distribution. If we define the divergence measure of two PDF’s as∫

∞

0
f(x) ln (f(x)/fM (x))dx, whenever the two PDF’s have the

same fractional moments we have∫
∞

0

f(x) ln
f(x)

fM (x)
dx = H[fM ] − H[f ] (4)

Hence the two entropies converge to each other in the case of the
FM’s equivalence. Therefore we can always find an optimal choice
for the fractional parameters αj [4, 5, 6]. We assume {x1, · · · , xN}
are the received samples, then, in order to determine the parameters
of fM (x) in (1), we implement the following optimization for j =
0, · · · , M

min
αj ,λj

H[fM ] =
M∑

j=0

λj µ̂αj
, µ̂αj

=
1

N

N∑
n=1

x
αj
n . (5)

Also, it has been proven that the convergence to the exact PDF holds
as M→∞ [5, 6]. Our optimization results show that applying FM
instead of the integer moments causes the MAXENT estimated PDF
fM (x) to converge to f(x) much faster. For example in Figures 1
and 2, we compare the resulting MAXENT density estimates by
5000 samples of a K–distributed random variable. Using the first
four sample integer moments, and two sample FM, that the opti-
mization (5) determines (1.1093,1.9989), we arrive at the following
estimates for the PDF of K–distribution (7) with parameter ν = 0.5
for x ∈ [xmin = 6.4e−7, xmax = 12.2]

fM (x)=exp
(−0.22 − 0.58x − 0.186x2 + 0.027x3 − 0.001x4) ,

fM (x)=exp
(−0.0667 − 0.9558x1.1093 + 0.033x1.9989)

Our comparative measure is the relative error defined as

relative error =
|True PDF − Approximated PDF|

True PDF
.

As it is shown in Figures 1 and 2, the PDF obtained via two opti-
mized FM provide a better accuracy over the MAXENT PDF esti-
mator based on four integer moments.

3. SIGNAL DETECTION IN CLUTTER ENVIRONMENTS

In the past two decades there have been lots of works in the litera-
ture to claim the validity of non-Gaussian clutter models. Among
these models the compound-Gaussian model is of great interest. In
this model, which its properties are close to the Gaussian vectors, a
vector of size N of clutter returns mathematically corresponds to a
spherically invariant random vector (SIRV). If we consider the com-
plex clutter envelope vector as c; (the boldfaced characters are to
denote vectors), we have

c = xs, (6)

where s is a non-negative random variable and x ∼ N (0,M) where
N (·) is to denote the Gaussian PDF, andM is the covariance matrix.
Based on the PDF of s, f(s), the clutter variable c may have different
densities. In the case of K–distributed clutter, f(s), is a generalized
Chi-PDF and it has been also shown that for the Weibull clutter f(s)
can be expressed in terms of Meijers G functions[9]. The densities

fk(c) =
bν+1

Γ(ν)2ν−1
cνKν−1(bc), b =

√
2ν, c � 0 (7)

fw(c) = abcb−1 exp(−acb), c � 0 (8)

are respectively K and Weibull clutter densities. According to the
SIRV properties, the problem of detecting the signal in a correlated
clutter is equivalent to that of detecting its filtered version [7]. There-
fore we can assume the uncorrelated disturbance without loss of gen-
erality. The hypothesis tests are established as follows

H0 : y = c (9)

H1 : y = αp + c (10)

where y, p and c are N dimensional complex vectors of the received
signal, the transmitted signal, and the uncorrelated clutter, respec-
tively. α is a complex vector in the form of A exp(jθ); A is a ran-
dom variate, specified according to the target fluctuating model and θ
is a uniform random variable. Now we assume that we have no prior
information about the target parameter α = A exp(jθ) in N pulses,
then, in this case, the generalized likelihood ratio test (GLRT) is a
suitable detection approach [8]. GLRT is a Neyman-Pearson like-
lihood ratio test in which the unknown parameter is substituted by
its maximum likelihood solution. Since GLRT optimum test usually
has a complex structure, we can consider the asymptotic forms of
the GLRT instead of its optimum tests [7, 10] as a comparison to the
new technique presented in this paper.

4. THE NEW DETECTION SCHEME USING FM MAXENT

Our detection scheme is based on the well known Neyman-Pearson
likelihood ratio test and the MAXENT PDF estimation of the hy-
pothesis test sample variates with the aid of FM. The Neyman-Pearson
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log-likelihood test statistics for the N received pulses is

T (y) =

N∑
i=1

ai(yi),

ai(yi) = ln

(
fi(yi|H1)

fi(yi|H0)

)
. (11)

Since the samples returned from different transmitted pulses are IID,
by solving the optimization problem in (5), for a single pulse re-
turned sample variates, we have

f (yi|H1) = exp

(
−

M∑
j=0

λ1jy
α1j

i

)
(12)

f (yi|H0) = exp

(
−

M∑
j=0

λ0jy
α0j

i

)
. (13)

Using the above PDF models and the Neyman-Pearson test statistics
in (11), we are led to the following new test statistics for N pulses

T (y)=
N∑

i=1

ai(yi)
H1

>
<
H0

γ (14)

ai(yi)=

(
M∑

j=0

λ0jy
α0j

i −
M∑

j=0

λ1jy
α1j

i

)
, i = 1, · · · , N. (15)

Since, by means of optimized FM, the MAXENT PDF of (5) con-
verges to the true PDF, the above test in (14) is a suitable statistics
consisting of only a very few terms and easily applicable and imple-
mentable into a digital system. On the other hand, the method does
not require any prior information about the clutter density, therefore,
we could apply the new detection scheme in various types of clut-
ter environments. Moreover, the estimated PDF via FM-MAXENT
definitely converge to the true, but (un)known (non)homogeneous
clutter PDF.

5. SIMULATIONS AND RESULTS

We consider the N IID uncorrelated clutter samples and compare the
performance of the new detection scheme with the GLRT detection
technique. We assume that in the target parameter α = A exp(jθ)
both the amplitude and phase are unknown and fluctuating accord-
ing to the Swerling� target model. In Figure 3, Pd is illustrated
versus the signal to clutter ratio (SCR) for a single pulse. Pfa is set
to 10−3, the K–distributed parameter is ν = 0.5 and the number
of pulses are N = 10. Figure 4 shows the ROC curves for two de-
tectors in the presence of the K–distributed clutter. The parameters
are ν = 1, 0.5, N = 10 and SCR = −5dB. We have summarized
some of the simulation results in the Weibull clutter environment in
tables 1 and 2, we also note that the GLRT detector in literature for
Weibull clutter is too complex to be implemented [10]. In this case,
because of the complexity of the optimum GLRT test, we have used
the asymptotic GLRT for our comparison. All these performances
are obtained via the Monte Carlo simulation method. We see the
improvement in the performance of the new detector over all other
detectors currently available.

6. CONCLUSION

In this paper, we introduced a new test statistics for detection of un-
known RADAR signals in the presence of the cluttered environment

without any prior knowledge about the clutter density function. Our
detection test is based on the MAXENT PDF estimation by means
of the optimum FM. We compared our simulations with the GLRT
strategy. The results show a promising performance using the new
detection scheme.
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Fig. 1. comparison of MAXENT density estimates for a K–
distributed random variable(ν = 0.5), using four integer moments,
and two optimum FM.
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Fig. 2. Relative errors of MAXENT density estimates for a K–
distributed random variable(ν = 0.5), using four integer moments,
and two optimum FM.

Pfa GLRT(Pd) New(Pd)
10−4 0.38 0.5
10−3 0.5 0.7
10−2 0.6 0.8
10−1 0.75 0.95

Table 1. Performance comparisons between the GLRT and the new
detection scheme in the presence of the Weibull distributed clutter
and the Swerling� target fluctuating model, a = 1, b = 0.5 and
SCR= -5dB.
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Fig. 3. Performance comparisons between the GLRT and the new
detection scheme in the presence of the K–distributed clutter and
the Swerling� target fluctuating model, ν = 0.5 and Pfa = 10−3
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Fig. 4. The ROC curves for the GLRT and the new detection scheme
in the presence of the K–distributed clutter and the Swerling� target
fluctuating model, ν = 1, 0.5 and SCR= -5dB

SCR(dB) GLRT(Pd) New(Pd)
−5 0.23 0.32
−3 0.35 0.41
−1 0.3 0.5
1 0.5 0.7

Table 2. Performance comparisons between the GLRT and the new
detection scheme in the presence of the Weibull distributed clutter
and the Swerling� target fluctuating model, a = 1, b = 0.8 and
Pfa = 10−3.
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